TY - JOUR
T1 - Hybrid Bionanocomposite Containing Magnesium Hydroxide Nanoparticles Embedded in a Carboxymethyl Cellulose Hydrogel plus Silk Fibroin as a Scaffold for Wound Dressing Applications
AU - Eivazzadeh-Keihan, Reza
AU - Khalili, Farzane
AU - Khosropour, Nastaran
AU - Aliabadi, Hooman Aghamirza Moghim
AU - Radinekiyan, Fateme
AU - Sukhtezari, Sima
AU - Maleki, Ali
AU - Madanchi, Hamid
AU - Hamblin, Michael R.
AU - Mahdavi, Mohammad
AU - Haramshahi, Seyed Mohammad Amin
AU - Shalan, Ahmed Esmail
AU - Lanceros-Méndez, Senentxu
N1 - Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/7/28
Y1 - 2021/7/28
N2 - Based on the promising biomedical developments in wound healing strategies, herein, a new nanobiocomposite scaffold was designed and presented by incorporation of carboxymethyl cellulose hydrogels prepared using epichlorohydrin as a cross-linking agent (CMC hydrogel), a natural silk fibroin (SF) protein, and magnesium hydroxide nanoparticles (Mg(OH)2 NPs). Biological evaluation of the CMC hydrogel/SF/Mg(OH)2 nanobiocomposite scaffold was conducted via in vitro cell viability assays and in vivo assays, red blood cell hemolysis, and antibiofilm assays. Considering the cell viability percentage of Hu02 cells (84.5%) in the presence of the prepared nanobiocomposite after 7 days, it was indicated that this new nanoscaffold was biocompatible. The signs of excellent hemocompatibility and the high antibacterial activity were observed due to the low-point hemolytic effect (8.3%) and high-level potential in constraining the P. aeruginosa biofilm formation with a low OD value (0.13). Moreover, in vivo wound healing assay results indicated that the wound healing method was faster in mice treated with the prepared nanobiocomposite scaffold (82.29%) than the control group (75.63%) in 12 days. Apart from the structural characterization of the CMC hydrogel/SF/Mg(OH)2 nanobiocomposite through FTIR, EDX, FESEM, and TG analyses, compressive mechanical tests, contact angle, porosity, and swelling ratio studies indicated that the combination of the CMC hydrogel structure with SF protein and Mg(OH)2 NPs could significantly impact Young's modulus (from 11.34 to 10.14 MPa), tensile strength (from 299.35 to 250.78 MPa), elongation at break (12.52 to 12.84%), hydrophilicity, and water uptake capacity (92.5%).
AB - Based on the promising biomedical developments in wound healing strategies, herein, a new nanobiocomposite scaffold was designed and presented by incorporation of carboxymethyl cellulose hydrogels prepared using epichlorohydrin as a cross-linking agent (CMC hydrogel), a natural silk fibroin (SF) protein, and magnesium hydroxide nanoparticles (Mg(OH)2 NPs). Biological evaluation of the CMC hydrogel/SF/Mg(OH)2 nanobiocomposite scaffold was conducted via in vitro cell viability assays and in vivo assays, red blood cell hemolysis, and antibiofilm assays. Considering the cell viability percentage of Hu02 cells (84.5%) in the presence of the prepared nanobiocomposite after 7 days, it was indicated that this new nanoscaffold was biocompatible. The signs of excellent hemocompatibility and the high antibacterial activity were observed due to the low-point hemolytic effect (8.3%) and high-level potential in constraining the P. aeruginosa biofilm formation with a low OD value (0.13). Moreover, in vivo wound healing assay results indicated that the wound healing method was faster in mice treated with the prepared nanobiocomposite scaffold (82.29%) than the control group (75.63%) in 12 days. Apart from the structural characterization of the CMC hydrogel/SF/Mg(OH)2 nanobiocomposite through FTIR, EDX, FESEM, and TG analyses, compressive mechanical tests, contact angle, porosity, and swelling ratio studies indicated that the combination of the CMC hydrogel structure with SF protein and Mg(OH)2 NPs could significantly impact Young's modulus (from 11.34 to 10.14 MPa), tensile strength (from 299.35 to 250.78 MPa), elongation at break (12.52 to 12.84%), hydrophilicity, and water uptake capacity (92.5%).
KW - hydrogel
KW - magnesium hydroxide
KW - nanobiocomposite
KW - nanoparticles
KW - scaffold
KW - silk fibroin
UR - http://www.scopus.com/inward/record.url?scp=85111521229&partnerID=8YFLogxK
U2 - 10.1021/acsami.1c07285
DO - 10.1021/acsami.1c07285
M3 - Article
C2 - 34278788
AN - SCOPUS:85111521229
SN - 1944-8244
VL - 13
SP - 33840
EP - 33849
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 29
ER -