Abstract
Recent analyses of X-ray photoemission (XPS) spectroscopy performed in some high-valence transition metal (TM) oxide insulators have implied the existence of band gaps of the p-p type, corresponding to dnL + dnL → dn + dnL2 charge fluctuations. This band gap is neither the d-d Mott-Hubbard nor the p-d charge-transfer type common to many insulating TM compounds. Thus, it is expected that upon metallization the magnetic moments and ordering will be barely affected since the d-bands are not directly involved in the band-gap closure. We have investigated high-pressure magnetic, structural, and transport properties of Sr2FeO4 (Fe4+), an antiferromagnetic (TN = 60 K) insulator, using diamond anvil cells up to P = 30 GPa. With the increasing pressure a significant increase in the conductance (σ) is observed and at PM = 19 GPa the compound metallizes as concluded from the onset of a negative slope of σ(T). Magnetic studies performed with 57Fe Mössbauer spectroscopy showed no evidence of a magnetic moment collapse at PM and beyond, up to P = 30 GPa. No structural phase transition occurs up to 30 GPa. The coexistence of magnetic moments and metallic state in this oxide is clear evidence of an intra-ligand p-p gap as proposed by the XPS data analyses.
Original language | English |
---|---|
Pages (from-to) | 1377-1378 |
Number of pages | 2 |
Journal | Journal of Magnetism and Magnetic Materials |
Volume | 177-181 |
Issue number | PART 2 |
DOIs | |
Publication status | Published - Jan 1998 |
Externally published | Yes |
Keywords
- High pressure
- Mössbauer spectroscopy
- Phase transitions - metal-insulator
- X-ray diffraction
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics