TY - JOUR
T1 - Heterogeneous ru catalysts as the emerging potential superior catalysts in the selective hydrogenation of bio-derived levulinic acid to γ-valerolactone
T2 - Effect of particle size, solvent, and support on activity, stability, and selectivity
AU - Maumela, Mulisa
AU - Marx, Sanette
AU - Meijboom, Reinout
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/2
Y1 - 2021/2
N2 - Catalytic hydrogenation of a biomass-derived molecule, levulinic acid (LA), to γ-valerolactone (GVL) has been getting much attention from researchers across the globe recently. This is because GVL has been identified as one of the potential molecules for replacing fossil fuels. For instance, GVL can be catalytically converted into liquid alkenes in the molecular weight range close to that found in transportation fuels via a process that does not require an external hydrogen source. Noble and non-noble metals have been used as catalysts for the selective hydrogenation of LA to GVL. Of these, Ru has been reported to be the most active metal for this reaction. The type of metal supports and solvents has been proved to affect the activity, selectivity, and yields of GVL. Water has been identified as a potential, effective “green” solvent for the hydrogenation of LA to GVL. The use of different sources of H2 other than molecular hydrogen (such as formic acid) has also been explored. In a few instances, the product, GVL, is hydrogenated further to other useful products such as 1,4-pentanediol (PD) and methyl tetrahydrofuran (MTHF). This review selectively focuses on the potential of immobilized Ru catalysts as a potential superior catalyst for selective hydrogenation of LA to GVL.
AB - Catalytic hydrogenation of a biomass-derived molecule, levulinic acid (LA), to γ-valerolactone (GVL) has been getting much attention from researchers across the globe recently. This is because GVL has been identified as one of the potential molecules for replacing fossil fuels. For instance, GVL can be catalytically converted into liquid alkenes in the molecular weight range close to that found in transportation fuels via a process that does not require an external hydrogen source. Noble and non-noble metals have been used as catalysts for the selective hydrogenation of LA to GVL. Of these, Ru has been reported to be the most active metal for this reaction. The type of metal supports and solvents has been proved to affect the activity, selectivity, and yields of GVL. Water has been identified as a potential, effective “green” solvent for the hydrogenation of LA to GVL. The use of different sources of H2 other than molecular hydrogen (such as formic acid) has also been explored. In a few instances, the product, GVL, is hydrogenated further to other useful products such as 1,4-pentanediol (PD) and methyl tetrahydrofuran (MTHF). This review selectively focuses on the potential of immobilized Ru catalysts as a potential superior catalyst for selective hydrogenation of LA to GVL.
KW - Heterogeneous
KW - Hydrogenation
KW - Levulinic acid
KW - Ruthenium
KW - γ-valerolactone
UR - http://www.scopus.com/inward/record.url?scp=85101375575&partnerID=8YFLogxK
U2 - 10.3390/catal11020292
DO - 10.3390/catal11020292
M3 - Review article
AN - SCOPUS:85101375575
SN - 2073-4344
VL - 11
SP - 1
EP - 41
JO - Catalysts
JF - Catalysts
IS - 2
M1 - 292
ER -