Abstract
This study aims to elucidate the properties of aluminum nitrite nanotubes (AlNNT) encapsulated with phosphorus (P@AlNNT), sulphur (S@AlNNT), and silicon (Si@AlNNT) heteroatoms for use as biosensors for 5-hydroxyindoleacetic acid (5HIAA). It was considered an indicative biomarker for carcinoid tumors and investigated using the density functional theory (DFT) at the ωB97XD/def2svp level of theory. With adsorption energies of −0.009 eV, 0.055 eV, and 0.044 eV for 5HIAA_P@AINNT, 5HIAA_S@AINNT, and 5HIAA_Si@AINNT, respectively, the 5HIAA_P@AINNT was the only favorable system for adsorption of 5HIAA. According to the topological investigation, the hydrogen bond strength was in the order of 5HIAA_Si@AlNNT > 5HIAA_S@AlNNT > 5HIAA_P@AlNNT. This was also confirmed by NCI-RDG analysis. Regarding sensory parameters, as per the fraction of electron transfer, 5HIAA_S@AlNNT had the highest propensity to react with the sensor followed by 5HIAA_Si@AlNNT. The order of recovery time (τ) was recorded to be 5HIAA_P@AlNNT < 5HIAA_S@AlNNT < 5HIAA_Si@AlNNT. It was recorded that the systems 5HIAA_S@AlNNT and 5HIAA_Si@AlNNT had longer recovery times at 310 K when compared to their recovery times at 298 K. However, the system 5HIAA_P@AlNNT records a minute shorter recovery time at 298 K compared to its recovery time at 310 K. Results from molecular dynamic simulation reveal that 5HIAA_S@AlNNT and 5HIAA_Si@AlNNT are more thermally stable, which is necessary for reliable and accurate detection. System 5HIAA_P@AlNNT records the most favourable adsorption property and considerable sensing characteristics.
Original language | English |
---|---|
Pages (from-to) | 832-846 |
Number of pages | 15 |
Journal | Molecular Systems Design and Engineering |
Volume | 9 |
Issue number | 8 |
DOIs | |
Publication status | Published - 22 May 2024 |
ASJC Scopus subject areas
- Chemistry (miscellaneous)
- Chemical Engineering (miscellaneous)
- Biomedical Engineering
- Energy Engineering and Power Technology
- Process Chemistry and Technology
- Industrial and Manufacturing Engineering
- Materials Chemistry