Health and safety control measures and MR quality control results in the MRI units of two public hospitals within the Mangaung metropolitan

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


This study aimed to identify risks and hazards in the magnetic resonance imaging (MRI) units, and assess the quality compliance of the scanners within two public hospitals in Mangaung. This is a follow-up study from a previously published study that measured static magnetic fields and radiofrequency magnetic fields in the MRI units included here. An observational checklist was used to identify risks and hazards which were later fed into a baseline risk assessment to classify and review existing control measures in the MRI units of hospitals A and B. The availability of MRI Health and Safety measures were benchmarked against the latest American College of Radiology (ACR) MRI safety requirements. The probability of risk occurrence and severity of hazards were assigned a score ranging from improbable (1) to very likely (5) and minimal (1) to irreversible effect (5). The weekly quality control test results obtained from both units were measured against the ACR quality control acceptable criteria. Similar risks were observed in both MRI units but the multiplication of probability and consequence in all risk categories resulted in a moderate risk-rating score of 12.3 for hospital A and 13.1 for hospital B. Lack of demarcation of four MRI safety zones, ferromagnetic detectors, 5-gauss line, and access control in both units scored above 15 and were classified as high risk. The defective air-cooling systems influenced the temperature of the scanner room, which affected the apparent diffusion coefficient (ADC) measurements performed from 1.5 T Siemens. On a 3.0 T Philips, a low contrast object detectability had 29 spokes for ACR T2, while the percent integral uniformity for image intensity uniformity was 78.2 %. High and moderate risks observed in both units could be reduced by the implementation of an effective health and safety programme. The ambient temperature within the scanner room should be maintained at 21 °C to attain well-performing ADC measurements and RF subsystems should be visually inspected and maintained regularly to obtain optimal image quality.

Original languageEnglish
Article number734
JournalSN Applied Sciences
Issue number8
Publication statusPublished - Aug 2021


  • Hazards
  • Magnetic resonance imaging
  • Quality control
  • Risk assessment
  • Risks

ASJC Scopus subject areas

  • General Engineering
  • General Environmental Science
  • General Materials Science
  • General Physics and Astronomy
  • General Chemical Engineering
  • General Earth and Planetary Sciences


Dive into the research topics of 'Health and safety control measures and MR quality control results in the MRI units of two public hospitals within the Mangaung metropolitan'. Together they form a unique fingerprint.

Cite this