TY - GEN
T1 - Healing products of Gaussian process experts
AU - Cohen, Samuel
AU - Mbuvha, Rendani
AU - Marwala, Tshilidzi
AU - Deisenroth, Marc Peter
N1 - Publisher Copyright:
© 37th International Conference on Machine Learning, ICML 2020.
PY - 2020
Y1 - 2020
N2 - Gaussian processes (GPs) are nonparametric Bayesian models that have been applied to regression and classification problems. One of the approaches to alleviate their cubic training cost is the use of local GP experts trained on subsets of the data. In particular, product-of-expert models combine the predictive distributions of local experts through a tractable product operation. While these expert models allow for massively distributed computation, their predictions typically suffer from erratic behaviour of the mean or uncalibrated uncertainty quantification. By calibrating predictions via a tempered softmax weighting, we provide a solution to these problems for multiple product-of-expert models, including the generalised product of experts and the robust Bayesian committee machine. Furthermore, we leverage the optimal transport literature and propose a new product-of-expert model that combines predictions of local experts by computing their Wasserstein barycenter, which can be applied to both regression and classification.
AB - Gaussian processes (GPs) are nonparametric Bayesian models that have been applied to regression and classification problems. One of the approaches to alleviate their cubic training cost is the use of local GP experts trained on subsets of the data. In particular, product-of-expert models combine the predictive distributions of local experts through a tractable product operation. While these expert models allow for massively distributed computation, their predictions typically suffer from erratic behaviour of the mean or uncalibrated uncertainty quantification. By calibrating predictions via a tempered softmax weighting, we provide a solution to these problems for multiple product-of-expert models, including the generalised product of experts and the robust Bayesian committee machine. Furthermore, we leverage the optimal transport literature and propose a new product-of-expert model that combines predictions of local experts by computing their Wasserstein barycenter, which can be applied to both regression and classification.
UR - http://www.scopus.com/inward/record.url?scp=85092772027&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85092772027
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 2046
EP - 2055
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
PB - International Machine Learning Society (IMLS)
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -