Headspace hollow fiber protected liquid-phase microextraction combined with gas chromatography-mass spectroscopy for speciation and determination of volatile organic compounds of selenium in environmental and biological samples

Ensieh Ghasemi, Mika Sillanpää, Nahid Mashkouri Najafi

Research output: Contribution to journalArticlepeer-review

49 Citations (Scopus)

Abstract

A simple and novel speciation method for the determination of volatile organic compounds of selenium (dimethylselenide (DMSe) and dimethyldiselenide (DMDSe) has been developed using a headspace hollow fiber protected liquid-phase microextraction (HS-HF-LPME) combined with capillary gas chromatography-mass spectrometry (GC-MS). The organic solvent impregnated in the pores and filled inside the porous hollow fiber membrane was used as an extraction interface in the HS-HF-LPME of the compounds. The effect of different variables on the extraction efficiency was studied simultaneously using an experimental design. The variables of interest in the HS-HF-LPME were sample volume, extraction time, temperature of sample solution, ionic strength, stirring rate and dwelling time. A Plackett-Burman design was performed for screening in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by a Box-Behnken design (BBD) and the response surface equations were derived. Under optimum conditions, preconcentration factors up to 1250 and 1170 were achieved for DMSe and DMDSe respectively. The detection limit and relative standard deviation (RSD) (n=5, c=50μgL-1) for DMSe were 65ngL-1 and 4.8%, respectively. They were also obtained for DMDSe as 57ngL-1 and 3.9%, respectively. The developed technique was found to be applicable to spiked environmental and biological samples.

Original languageEnglish
Pages (from-to)380-386
Number of pages7
JournalJournal of Chromatography A
Volume1218
Issue number3
DOIs
Publication statusPublished - 21 Jan 2011
Externally publishedYes

Keywords

  • GC
  • Gas chromatography
  • Head space
  • Hollow fiber
  • Selenium

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Headspace hollow fiber protected liquid-phase microextraction combined with gas chromatography-mass spectroscopy for speciation and determination of volatile organic compounds of selenium in environmental and biological samples'. Together they form a unique fingerprint.

Cite this