Abstract
Electrochemical supercapacitors, one of the storage devices, have attracted much attention owing to their high power density, fast charge-discharge and long cycle life. In this study, we present findings of a hybrid system comprised of gold and polyaniline, fabricated via an in-situ, one pot synthesis route and designed for use in symmetric supercapacitor applications. The gold-polyaniline (Au-PANI) based hybrid material was thoroughly characterized using microscopic, optical, and surface analytical techniques to gain a comprehensive understanding of the system. The electrochemical performance of Au-PANI based electrode was examined using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The hybrid system exhibited maximum specific capacitance (CS) 387 F/g at the current density of 12 A/g for three electrode system. The symmetric supercapacitor exhibited a maximum specific capacity (QS) 303 mAh/g at the current density of 0.1 A/g and achieved a maximum energy density (ED) and power density (PD) of 243 mWh/kg and 619 W/kg at the current density of 0.1 A/g and 0.9 A/g, respectively. Further, the Au-PANI based symmetric device was applied to generate low-frequency waveforms.
Original language | English |
---|---|
Article number | 117693 |
Journal | Synthetic Metals |
Volume | 307 |
DOIs | |
Publication status | Published - 1 Sept 2024 |
Keywords
- Energy density
- Gold-polyaniline
- Power density
- Relaxation oscillator
- Specific capacity
- Symmetric supercapacitor
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry