Abstract
Gamma-ray bursts (GRBs) are the most electromagnetically luminous cosmic explosions. They are powered by collimated streams of plasma (jets) ejected by a newborn stellar-mass black hole or neutron star at relativistic velocities. Their short-lived (typically tens of seconds) prompt γ-ray emission from within the ejecta is followed by long-lived multi-wavelength afterglow emission from the ultra-relativistic forward shock. This shock is driven into the circumburst medium by the GRB ejecta. which are in turn decelerated by a mildly relativistic reverse shock. Forward-shock emission was recently detected as teraelectronvolt-energy γ-rays. Such very-high-energy emission was also predicted from the reverse shock. Here we report the detection of optical and gigaelectronvolt-energy γ-ray emission from GRB 180720B during the first few hundred seconds, which is explained by synchrotron and inverse-Compton emission from the reverse shock propagating into the ejecta, implying a low-magnetization ejecta. Our optical measurements show a clear transition from the reverse shock to the forward shock driven into the circumburst medium, accompanied by a 90° change in the mean polarization angle and fluctuations in the polarization degree and angle. This indicates turbulence with large-scale toroidal and radially stretched magnetic-field structures in the reverse and forward shocks, respectively, which tightly couple to the physics of relativistic shocks and GRB jets, namely launching, composition, dissipation and particle acceleration.
Original language | English |
---|---|
Pages (from-to) | 134-144 |
Number of pages | 11 |
Journal | Nature Astronomy |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2024 |
ASJC Scopus subject areas
- Astronomy and Astrophysics