TY - CHAP
T1 - Fuzzy logic control in communication networks
AU - Chrysostomou, Chrysostomos
AU - Pitsillides, Andreas
PY - 2009
Y1 - 2009
N2 - The problem of network congestion control remains a critical issue and a high priority, especially given the increased demand to use the Internet for time/delay-sensitive applications with differing Quality of Service (QoS) requirements (e.g. Voice over IP, video streaming, Peer-to-Peer, interactive games). Despite the many years of research efforts and the large number of different control schemes proposed, there are still no universally acceptable congestion control solutions. Thus, even with the classical control system techniques used from various researchers, these still do not perform sufficiently to control the dynamics, and the nonlinearities of the TCP/IP networks, and thus meet the diverse needs of today's Internet. Given the need to capture such important attributes of the controlled system, the design of robust, intelligent control methodologies is required. Consequently, a number of researchers are looking at alternative non-analytical control system design and modeling schemes that have the ability to cope with these difficulties in order to devise effective, robust congestion control techniques as an alternative (or supplement) to traditional control approaches. These schemes employ fuzzy logic control (a well-known Computational Intelligence technique). In this chapter, we firstly discuss the difficulty of the congestion control problem and review control approaches currently in use, before we motivate the utility of Computational Intelligence based control. Then, through a number of examples, we illustrate congestion control methods based on fuzzy logic control. Finally, some concluding remarks and suggestions for further work are given.
AB - The problem of network congestion control remains a critical issue and a high priority, especially given the increased demand to use the Internet for time/delay-sensitive applications with differing Quality of Service (QoS) requirements (e.g. Voice over IP, video streaming, Peer-to-Peer, interactive games). Despite the many years of research efforts and the large number of different control schemes proposed, there are still no universally acceptable congestion control solutions. Thus, even with the classical control system techniques used from various researchers, these still do not perform sufficiently to control the dynamics, and the nonlinearities of the TCP/IP networks, and thus meet the diverse needs of today's Internet. Given the need to capture such important attributes of the controlled system, the design of robust, intelligent control methodologies is required. Consequently, a number of researchers are looking at alternative non-analytical control system design and modeling schemes that have the ability to cope with these difficulties in order to devise effective, robust congestion control techniques as an alternative (or supplement) to traditional control approaches. These schemes employ fuzzy logic control (a well-known Computational Intelligence technique). In this chapter, we firstly discuss the difficulty of the congestion control problem and review control approaches currently in use, before we motivate the utility of Computational Intelligence based control. Then, through a number of examples, we illustrate congestion control methods based on fuzzy logic control. Finally, some concluding remarks and suggestions for further work are given.
UR - http://www.scopus.com/inward/record.url?scp=66749164722&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-01533-5_8
DO - 10.1007/978-3-642-01533-5_8
M3 - Chapter
AN - SCOPUS:66749164722
SN - 9783642015328
T3 - Studies in Computational Intelligence
SP - 197
EP - 236
BT - Foundations of Computational Intelligence Volume 2
A2 - Hassanien, Aboul-Ella
A2 - Abraham, Ajith
A2 - Herrera, Francisco
ER -