Abstract
High-performance ferric phosphate (FePO4), with well-defined ellipsoid morphology and uniform particle size distribution, is successfully fabricated via a green spray drying method with formic acid as additive. It is found that the added formic acid plays a crucial role for the formation of the well-distributed FePO4 particles. Benefited by the outstanding structure and properties of ferric phosphate prepared above, a high performance of lithium iron phosphate (LiFePO4) has been prepared. It exhibits high capacity, especially at high charging/discharging rate (158.4 mAh g−1 at 0.2 C and 107.3 mAh g−1 at 10 C), and excellent cycling stability (without capacity fading after cycling for 200cycles at 1 C). All these impressive electrochemical performance could be ascribed to the FePO4 precursor, and further attributed to the addition of formic acid, which may play as a template, resulting in the well-defined morphology, uniform particles size distribution, hierarchical pore structure, and high surface area of the ferric phosphate.
Original language | English |
---|---|
Pages (from-to) | 16652-16658 |
Number of pages | 7 |
Journal | Ceramics International |
Volume | 43 |
Issue number | 18 |
DOIs | |
Publication status | Published - 15 Dec 2017 |
Externally published | Yes |
Keywords
- Electrochemical performance
- Ferric phosphate
- Formic acid
- Lithium ion battery
- Spray-drying
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry