Finite volume approximations and strict stability for hyperbolic problems

Jan Nordström, Martin Björck

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

Strictly stable finite volume formulations for long time integration of hyperbolic problems are formulated by modifying conventional and widely used finite volume schemes close to the boundary. The modification leads to difference operators that satisfy a summation-by-parts rule and the boundary conditions are imposed by a penalty procedure. Both node centered and cell centered approximations are considered. Numerical studies corroborate the superior stability of the modified formulations for long time integrations.

Original languageEnglish
Pages (from-to)237-255
Number of pages19
JournalApplied Numerical Mathematics
Volume38
Issue number3
DOIs
Publication statusPublished - Aug 2001
Externally publishedYes

ASJC Scopus subject areas

  • Numerical Analysis
  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Finite volume approximations and strict stability for hyperbolic problems'. Together they form a unique fingerprint.

Cite this