Abstract
This paper proposes the response surface method for finite element model updating. The response surface method is implemented by approximating the finite element model surface response equation by a multi-layer perceptron. The updated parameters of the finite element model were calculated using genetic algorithm by optimizing the surface response equation. The proposed method was compared to the existing methods that use simulated annealing or genetic algorithm together with a full finite element model for finite element model updating. The proposed method was tested on an unsymmetrical H-shaped structure. It was observed that the proposed method gave the updated natural frequencies and mode shapes that were of the same order of accuracy as those given by simulated annealing and genetic algorithm. Furthermore, it was observed that the response surface method achieved these results at a computational speed that was more than 2.5 times as fast as the genetic algorithm and a full finite element model and 24 times faster than the simulated annealing.
Original language | English |
---|---|
Pages (from-to) | 5165-5173 |
Number of pages | 9 |
Journal | Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference |
Volume | 7 |
DOIs | |
Publication status | Published - 2004 |
Externally published | Yes |
Event | Collect. of Pap. - 45th AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dyn. and Mater. Conf.; 12th AIAA/ASME/AHS Adapt. Struct. Conf.; 6th AIAA Non-Deterministic Approaches Forum; 5th AIAA Gossamer Spacecraft Forum - Palm Springs, CA, United States Duration: 19 Apr 2004 → 22 Apr 2004 |
ASJC Scopus subject areas
- Architecture
- General Materials Science
- Aerospace Engineering
- Mechanics of Materials
- Mechanical Engineering