Finite element model selection using particle swarm optimization

Linda Mthembu, Tshilidzi Marwala, Michael I. Friswell, Sondipon Adhikari

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Citations (Scopus)


This paper proposes the application of particle swarm optimization (PSO) to the problem of finite element model (FEM) selection. This problem arises when a choice of the best model for a system has to be made from set of competing models, each developed a priori from engineering judgment. PSO is a population-based stochastic search algorithm inspired by the behaviour of biological entities in nature when they are foraging for resources. Each potentially correct model is represented as a particle that exhibits both individualistic and group behaviour. Each particle moves within the model search space looking for the best solution by updating the parameters values that define it. The most important step in the particle swarm algorithm is the method of representing models which should take into account the number, location and variables of parameters to be updated. One example structural system is used to show the applicability of PSO in finding an optimal FEM. An optimal model is defined as the model that has the least number of updated parameters and has the smallest parameter variable variation from the mean material properties. Two different objective functions are used to compare performance of the PSO algorithm.

Original languageEnglish
Title of host publicationDynamics of Civil Structures - Proceedings of the 28th IMAC, A Conference on Structural Dynamics, 2010
PublisherSpringer New York LLC
Number of pages12
ISBN (Print)9781441998309
Publication statusPublished - 2011

Publication series

NameConference Proceedings of the Society for Experimental Mechanics Series
ISSN (Print)2191-5644
ISSN (Electronic)2191-5652

ASJC Scopus subject areas

  • General Engineering
  • Computational Mechanics
  • Mechanical Engineering


Dive into the research topics of 'Finite element model selection using particle swarm optimization'. Together they form a unique fingerprint.

Cite this