Financial inclusion in emerging economies: The application of machine learning and artificial intelligence in credit risk assessment

Research output: Contribution to journalArticlepeer-review

79 Citations (Scopus)

Abstract

In banking and finance, credit risk is among the important topics because the process of issuing a loan requires a lot of attention to assessing the possibilities of getting the loaned money back. At the same time in emerging markets, the underbanked individuals cannot access traditional forms of collateral or identification that is required by financial institutions for them to be granted loans. Using the literature review approach through documentary and conceptual analysis to investigate the impact of machine learning and artificial intelligence in credit risk assessment, this study discovered that artificial intelligence and machine learning have a strong impact on credit risk assessments using alternative data sources such as public data to deal with the problems of information asymmetry, adverse selection, and moral hazard. This allows lenders to do serious credit risk analysis, to assess the behaviour of the customer, and subsequently to verify the ability of the clients to repay the loans, permitting less privileged people to access credit. Therefore, this study recommends that financial institutions such as banks and credit lending institutions invest more in artificial intelligence and machine learning to ensure that financially excluded households can obtain credit.

Original languageEnglish
Article number39
JournalInternational Journal of Financial Studies
Volume9
Issue number3
DOIs
Publication statusPublished - Sept 2021

Keywords

  • Application
  • Artificial intelligence
  • Credit risk assessment
  • Emerging economies
  • Financial inclusion
  • Machine learning

ASJC Scopus subject areas

  • Finance

Fingerprint

Dive into the research topics of 'Financial inclusion in emerging economies: The application of machine learning and artificial intelligence in credit risk assessment'. Together they form a unique fingerprint.

Cite this