TY - JOUR
T1 - Exploring the population of Galactic very-high-energy γ-ray sources
AU - the CTA Consortium
AU - Steppa, Constantin
AU - Egberts, Kathrin
AU - Abdalla, H.
AU - Abe, H.
AU - Abe, S.
AU - Abusleme, A.
AU - Acero, F.
AU - Acharyya, A.
AU - Acín Portella, V.
AU - Ackley, K.
AU - Adam, R.
AU - Adams, C.
AU - Adhikari, S. S.
AU - Aguado-Ruesga, I.
AU - Agudo, I.
AU - Aguilera, R.
AU - Aguirre-Santaella, A.
AU - Aharonian, F.
AU - Alberdi, A.
AU - Alfaro, R.
AU - Alfaro, J.
AU - Alispach, C.
AU - Aloisio, R.
AU - Alves Batista, R.
AU - Amans, J. P.
AU - Amati, L.
AU - Amato, E.
AU - Ambrogi, L.
AU - Ambrosi, G.
AU - Ambrosio, M.
AU - Ammendola, R.
AU - Anderson, J.
AU - Anduze, M.
AU - Angüner, E. O.
AU - Antonelli, L. A.
AU - Antonuccio, V.
AU - Antoranz, P.
AU - Anutarawiramkul, R.
AU - Aragunde Gutierrez, J.
AU - Aramo, C.
AU - Araudo, A.
AU - Araya, M.
AU - Arbet-Engels, A.
AU - Arcaro, C.
AU - Arendt, V.
AU - Armand, C.
AU - Armstrong, T.
AU - Arqueros, F.
AU - Arrabito, L.
AU - Razzaque, S.
N1 - Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons.
PY - 2022/3/18
Y1 - 2022/3/18
N2 - At very high energies (VHE), the emission of γ rays is dominated by discrete sources. Due to the limited resolution and sensitivity of current-generation instruments, only a small fraction of the total Galactic population of VHE γ-ray sources has been detected significantly. The larger part of the population can be expected to contribute as a diffuse signal alongside emission originating from propagating cosmic rays. Without quantifying the source population, it is not possible to disentangle these two components. Based on the H.E.S.S. Galactic plane survey, a numerical approach has been taken to develop a model of the population of Galactic VHE γ-ray sources, which is shown to account accurately for the observational bias. We present estimates of the absolute number of sources in the Galactic Plane and their contribution to the total VHE γ-ray emission for five different spatial source distributions. Prospects for CTA and its ability to constrain the model are discussed. Finally, first results of an extension of our modelling approach using machine learning to extract more information from the available data set are presented.
AB - At very high energies (VHE), the emission of γ rays is dominated by discrete sources. Due to the limited resolution and sensitivity of current-generation instruments, only a small fraction of the total Galactic population of VHE γ-ray sources has been detected significantly. The larger part of the population can be expected to contribute as a diffuse signal alongside emission originating from propagating cosmic rays. Without quantifying the source population, it is not possible to disentangle these two components. Based on the H.E.S.S. Galactic plane survey, a numerical approach has been taken to develop a model of the population of Galactic VHE γ-ray sources, which is shown to account accurately for the observational bias. We present estimates of the absolute number of sources in the Galactic Plane and their contribution to the total VHE γ-ray emission for five different spatial source distributions. Prospects for CTA and its ability to constrain the model are discussed. Finally, first results of an extension of our modelling approach using machine learning to extract more information from the available data set are presented.
UR - http://www.scopus.com/inward/record.url?scp=85145255128&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85145255128
SN - 1824-8039
VL - 395
JO - Proceedings of Science
JF - Proceedings of Science
M1 - 798
T2 - 37th International Cosmic Ray Conference, ICRC 2021
Y2 - 12 July 2021 through 23 July 2021
ER -