TY - GEN
T1 - Experimental investigation of nozzle clogging using vibration signal-based condition monitoring for fused deposition modeling
AU - Jhodkar, Durwesh
AU - Nayak, Ankit
AU - Gupta, Kapil
N1 - Publisher Copyright:
© 2021 Trans Tech Publications Ltd, Switzerland.
PY - 2021
Y1 - 2021
N2 - Fused deposition modeling (FDM) or 3D printing is one of the promising techniques widely preferred to fabricate complex and customized 3D objects or prototypes for various engineering and non-engineering applications. With the growing demands of customized prototypes, researchers are facing a major challenge for maintaining effective part quality with adequate surface finish and strength; and minimizing the cost, defects, and waste in 3D printing. Condition monitoring is one of the strategies to achieve the aforementioned. It has a huge potential to minimize defects and print failures in 3D printing. The main objective of this research work is to perform online condition monitoring of the nozzle status with the help of vibration signals in fused deposition modelling process. The effect of nozzle clogging on the consistency of material deposition and its effect on surface finish has experimentally investigated in this work. The set of experiments were performed by artificially creating the condition of nozzle clogging to investigate the effect of nozzle clogging on print quality (surface finish). Nozzle clogging condition was created by increasing the feed rate of polylactic acid (PLA) filament at a low heat supply rate to the nozzle by modifying the commands of 3D printer. The layer thickness was varied throughout the experiments to observe the nozzle clogging. The vibrations signals were acquired by using an accelerometer that was mounted near the nozzle. The data acquisition frequency of the accelerometer was 12500Hz. Further, the acquired vibration signals were analyzed using the Fast Fourier transformation (FFT) signal processing technique. Results revealed that nozzle clogging severely affects surface quality and geometrical accuracy of the fabricated 3D part due to nozzle vibration and non-uniform material deposition. Moreover, nozzle clogging and its relevant consequences like non uniform material deposition can be monitored using vibration signal-based condition monitoring during part fabrication and based upon that appropriate measures can be taken for defects and waste elimination.
AB - Fused deposition modeling (FDM) or 3D printing is one of the promising techniques widely preferred to fabricate complex and customized 3D objects or prototypes for various engineering and non-engineering applications. With the growing demands of customized prototypes, researchers are facing a major challenge for maintaining effective part quality with adequate surface finish and strength; and minimizing the cost, defects, and waste in 3D printing. Condition monitoring is one of the strategies to achieve the aforementioned. It has a huge potential to minimize defects and print failures in 3D printing. The main objective of this research work is to perform online condition monitoring of the nozzle status with the help of vibration signals in fused deposition modelling process. The effect of nozzle clogging on the consistency of material deposition and its effect on surface finish has experimentally investigated in this work. The set of experiments were performed by artificially creating the condition of nozzle clogging to investigate the effect of nozzle clogging on print quality (surface finish). Nozzle clogging condition was created by increasing the feed rate of polylactic acid (PLA) filament at a low heat supply rate to the nozzle by modifying the commands of 3D printer. The layer thickness was varied throughout the experiments to observe the nozzle clogging. The vibrations signals were acquired by using an accelerometer that was mounted near the nozzle. The data acquisition frequency of the accelerometer was 12500Hz. Further, the acquired vibration signals were analyzed using the Fast Fourier transformation (FFT) signal processing technique. Results revealed that nozzle clogging severely affects surface quality and geometrical accuracy of the fabricated 3D part due to nozzle vibration and non-uniform material deposition. Moreover, nozzle clogging and its relevant consequences like non uniform material deposition can be monitored using vibration signal-based condition monitoring during part fabrication and based upon that appropriate measures can be taken for defects and waste elimination.
KW - 3D printing
KW - Condition monitoring
KW - FDM
KW - Nozzle clogging
KW - Vibration
UR - http://www.scopus.com/inward/record.url?scp=85116781404&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/MSF.1037.55
DO - 10.4028/www.scientific.net/MSF.1037.55
M3 - Conference contribution
AN - SCOPUS:85116781404
SN - 9783035718348
T3 - Materials Science Forum
SP - 55
EP - 64
BT - Intelligent Manufacturing and Materials
A2 - Bratan, Sergey
A2 - Roshchupkin, Stanislav
PB - Trans Tech Publications Ltd
T2 - International Conference on Intelligent Manufacturing and Materials, IMM 2021
Y2 - 1 March 2021 through 5 March 2021
ER -