Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

ATLAS Collaboration

Research output: Contribution to journalArticlepeer-review

282 Citations (Scopus)

Abstract

Light-by-light scattering (γγ → γγ) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead ions. Using 480 μ1 of lead-lead collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, here we report evidence for light-by-light scattering. A total of 13 candidate events were observed with an expected background of 2.6 ± 0.7 events. After background subtraction and analysis corrections, the fiducial cross-section of the process Pb + Pb (γγ) → Pb(∗) + Pb(∗) γγ,for photon transverse energy ET > 3GeV, photon absolute pseudorapidity |η| <2.4, diphoton invariant mass greater than 6GeV, diphoton transverse momentum lower than 2GeV and diphoton acoplanarity below 0.01, is measured to be 70 ± 24 (stat.) ±17 (syst.) nb, which is in agreement with the standard model predictions.

Original languageEnglish
Pages (from-to)852-858
Number of pages7
JournalNature Physics
Volume13
Issue number9
DOIs
Publication statusPublished - 5 Sept 2017

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC'. Together they form a unique fingerprint.

Cite this