Event reconstruction for KM3NeT/ORCA using convolutional neural networks

S. Aiello, A. Albert, S. Alves Garre, Z. Aly, F. Ameli, M. Andre, G. Androulakis, M. Anghinolfi, M. Anguita, G. Anton, M. Ardid, J. Aublin, C. Bagatelas, G. Barbarino, B. Baret, S. Basegmez du Pree, M. Bendahman, E. Berbee, A. M. van den Berg, V. BertinS. Biagi, A. Biagioni, M. Bissinger, M. Boettcher, J. Boumaaza, M. Bouta, M. Bouwhuis, C. Bozza, H. Brânzaş, R. Bruijn, J. Brunner, E. Buis, R. Buompane, J. Busto, B. Caiffi, D. Calvo, A. Capone, V. Carretero, P. Castaldi, S. Celli, M. Chabab, N. Chau, A. Chen, S. Cherubini, V. Chiarella, T. Chiarusi, M. Circella, R. Cocimano, J. A.B. Coelho, A. Coleiro, M. Colomer Molla, R. Coniglione, P. Coyle, A. Creusot, G. Cuttone, A. D’Onofrio, R. Dallier, M. de Palma, I. Di Palma, A. F. Díaz, D. Diego-Tortosa, C. Distefano, A. Domi, R. Donà, C. Donzaud, D. Dornic, M. Dörr, D. Drouhin, T. Eberl, A. Eddyamoui, T. van Eeden, D. van Eijk, I. El Bojaddaini, D. Elsaesser, A. Enzenhöfer, V. Espinosa Roselló, P. Fermani, G. Ferrara, M. D. Filipović, F. Filippini, L. A. Fusco, O. Gabella, T. Gal, A. Garcia Soto, F. Garufi, Y. Gatelet, N. Geißelbrecht, L. Gialanella, E. Giorgio, S. R. Gozzini, R. Gracia, K. Graf, D. Grasso, G. Grella, D. Guderian, C. Guidi, S. Hallmann, H. Hamdaoui, H. van Haren, A. Heijboer, A. Hekalo, J. J. Hernández-Rey, J. Hofestädt, F. Huang, W. Idrissi Ibnsalih, G. Illuminati, C. W. James, M. de Jong, P. de Jong, B. J. Jung, M. Kadler, P. Kalaczyński, O. Kalekin, U. F. Katz, N. R.Khan Chowdhury, G. Kistauri, F. van der Knaap, E. N. Koffeman, P. Kooijman, A. Kouchner, M. Kreter, V. Kulikovskiy, R. Lahmann, G. Larosa, R. Le Breton, O. Leonardi, F. Leone, E. Leonora, G. Levi, M. Lincetto, M. Lindsey Clark, T. Lipreau, A. Lonardo, F. Longhitano, D. Lopez-Coto, L. Maderer, J. Mańczak, K. Mannheim, A. Margiotta, A. Marinelli, C. Markou, L. Martin, J. A. Martínez-Mora, A. Martini, F. Marzaioli, S. Mastroianni, S. Mazzou, K. W. Melis, G. Miele, P. Migliozzi, E. Migneco, P. Mijakowski, L. S. Miranda, C. M. Mollo, M. Morganti, M. Moser, A. Moussa, R. Muller, M. Musumeci, L. Nauta, S. Navas, C. A. Nicolau, B. Fearraigh, M. Organokov, A. Orlando, G. Papalashvili, R. Papaleo, C. Pastore, A. M. Păun, G. E. Păvălaş, C. Pellegrino, M. Perrin-Terrin, P. Piattelli, C. Pieterse, K. Pikounis, O. Pisanti, C. Poirè, V. Popa, M. Post, T. Pradier, G. Pühlhofer, S. Pulvirenti, O. Rabyang, F. Raffaelli, N. Randazzo, A. Rapicavoli, S. Razzaque, D. Real, S. Reck, G. Riccobene, M. Richer, S. Rivoire, A. Rovelli, F. Salesa Greus, D. F.E. Samtleben, A. Sánchez Losa, M. Sanguineti, A. Santangelo, D. Santonocito, P. Sapienza, J. Schnabel, J. Seneca, I. Sgura, R. Shanidze, A. Sharma, F. Simeone, A. Sinopoulou, B. Spisso, M. Spurio, D. Stavropoulos, J. Steijger, S. M. Stellacci, M. Taiuti, Y. Tayalati, E. Tenllado, T. Thakore, S. Tingay, E. Tzamariudaki, D. Tzanetatos, V. van Elewyck, G. Vannoye, G. Vasileiadis, F. Versari, S. Viola, D. Vivolo, G. de Wasseige, J. Wilms, R. Wojaczyński, E. de Wolf, D. Zaborov, S. Zavatarelli, A. Zegarelli, D. Zito, J. D. Zornoza, J. Zúñiga, N. Zywucka

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.

Original languageEnglish
Article numberP10005
JournalJournal of Instrumentation
Volume15
Issue number10
DOIs
Publication statusPublished - Oct 2020

Keywords

  • Cherenkov detectors
  • Large detector systems for particle and astroparticle physics
  • Neutrino detectors
  • Performance of High Energy Physics Detectors

ASJC Scopus subject areas

  • Instrumentation
  • Mathematical Physics

Fingerprint

Dive into the research topics of 'Event reconstruction for KM3NeT/ORCA using convolutional neural networks'. Together they form a unique fingerprint.

Cite this