Abstract
Pharmaceutical pollutants in water pose a threat to ecosystems and human health by disrupting aquatic life, contributing to antibiotic resistance, and causing hormonal imbalances and increased disease susceptibility in humans. Thus, we report the fabrication of a novel BaTiO3/Cd0.5Zn0.5S heterojunction for the piezo-photocatalytic degradation of ciprofloxacin (CIP) in wastewater. The BaTiO3/Cd0.5Zn0.5S was synthesized via solvothermal deposition of Cd0.5Zn0.5S (CZS) onto BaTiO3 (BTO) nanorods. This heterojunction exhibited superior photocatalytic activity, degrading ciprofloxacin ∼85 % and ∼3 times more effectively than pristine CZS and BTO, respectively. Its enhanced piezo-photocatalytic performance is attributed to the induced piezoelectric effect, sulfur defects, internal electric field, and S-Scheme charge transfer. Scavenger studies identified h+, O2-, and •OH as the major reactive species responsible for CIP degradation. After 90 min, the extent of mineralization reached 46.7 %, and intermediate products were evaluated using Ultra-performance liquid chromatography-mass spectrometry(UPLC-MS), with their toxicity assessed using the Toxicity Estimation Software Tool (T.E.S.T). The catalyst demonstrated excellent stability over four reuse cycles. The successful development of the BTO/CZS heterojunction holds significant promise for advancing environmentally sustainable water treatment and pollution remediation technologies.
Original language | English |
---|---|
Article number | 116857 |
Journal | Journal of Environmental Chemical Engineering |
Volume | 13 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jun 2025 |
Keywords
- BaTiO
- Degradation pathway
- Pharmaceutical
- Piezocatalysis
- S-Scheme
- Toxicity
- Wastewater
ASJC Scopus subject areas
- Chemical Engineering (miscellaneous)
- Waste Management and Disposal
- Pollution
- Process Chemistry and Technology