Abstract
Ce3+-Tb3+ co-activated ZnAl2O4 powder phosphors were prepared by a solution combustion method using urea as a fuel. X-ray diffraction characterization showed that all the powders crystallized in the well known cubic spinel phase of ZnAl2O 4. An enhanced down-converted green emission associated with the 5D4→7F5 transitions of Tb 3+ ions was observed at 543 nm from the ZnAl2O 4:Ce3+, Tb3+ powders with different concentrations of Ce3+ and Tb3+. It was inferred from the fluorescence decay data that the enhancement was due to energy transfer from Ce3+ to Tb3+. Further, cathodoluminescence intensity degradation of the ZnAl2O4:Ce3+, Tb 3+ powder phosphors was investigated when the powders were irradiated with 2 keV electrons. X-ray photoelectron spectroscopy was used to analyze the chemical and electronic states of individual elements before and after electron irradiation. The ZnAl2O4:Ce3+, Tb3+ phosphor was evaluated to be used as a UV down-converting layer in conventional silicon photovoltaic cells or as a source of green light in field emission display technologies.
Original language | English |
---|---|
Article number | 031401 |
Journal | Journal of Vacuum Science and Technology B |
Volume | 30 |
Issue number | 3 |
DOIs | |
Publication status | Published - May 2012 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering
- Materials Chemistry