Endolithic Fungal Diversity in Antarctic Oligocene Rock Samples Explored Using DNA Metabarcoding

Natana G. Rabelo, Vívian N. Gonçalves, Marcelo A. Carvalho, Sandro M. Scheffler, Gustavo Santiago, Paula A. Sucerquia, Fabio S. Oliveira, Larissa P. Campos, Fabyano A.C. Lopes, Karita C.R. Santos, Micheline C. Silva, Peter Convey, Paulo E.A.S. Câmara, Luiz H. Rosa

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

In this study, we evaluated the fungal diversity present associated with cores of Oligocene rocks using a DNA metabarcoding approach. We detected 940,969 DNA reads grouped into 198 amplicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Mucoromycota, Rozellomycota, Blastocladiomycota, Monoblepharomycota, Zoopagomycota, Aphelidiomycota (Fungi) and the fungal-like Oomycota (Stramenopila), in rank abundance order. Pseudogymnoascus pannorum, Penicillium sp., Aspergillus sp., Cladosporium sp., Aspergillaceae sp. and Diaporthaceae sp. were assessed to be dominant taxa, with 22 fungal ASVs displaying intermediate abundance and 170 being minor components of the assigned fungal diversity. The data obtained displayed high diversity indices, while rarefaction indicated that the majority of the diversity was detected. However, the diversity indices varied between the cores analysed. The endolithic fungal community detected using a metabarcoding approach in the Oligocene rock samples examined contains a rich and complex mycobiome comprising taxa with different lifestyles, comparable with the diversity reported in recent studies of a range of Antarctic habitats. Due to the high fungal diversity detected, our results suggest the necessity of further research to develop strategies to isolate these fungi in culture for evolutionary, physiological, and biogeochemical studies, and to assess their potential role in biotechnological applications.

Original languageEnglish
Article number414
JournalBiology
Volume13
Issue number6
DOIs
Publication statusPublished - Jun 2024

Keywords

  • Antarctica
  • eDNA
  • environmental drivers
  • fungi

ASJC Scopus subject areas

  • General Biochemistry,Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Endolithic Fungal Diversity in Antarctic Oligocene Rock Samples Explored Using DNA Metabarcoding'. Together they form a unique fingerprint.

Cite this