Electrospun and functionalized PVDF/PAN nanocatalyst-loaded composite for dechlorination and photodegradation of pesticides in contaminated water

Richard M. Nthumbi, Jane C. Ngila

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

A novel approach for the electrospinning and functionalization of nanocatalyst-loaded polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) composite grafted with acrylic acid (AA; which form polyacrylic acid (PAA) brush) and decorated with silver (Ag/PAN/PVDF-g-PAA-TiO2/Fe–Pd) designed for the dechlorination and photodegradation of pesticides was carried out. PAN was used both as a nitrogen dopant as well as a co-polymer. Smooth nanofibers were obtained by electrospinning a solution of 12:2 wt.% PVDF/PAN blend using dimethylformamide (DMF) as solvent. The nanofibers were grafted with AA by free-radical polymerization using 2,2′azobis(2-methylpropionitrile) (AIBN) as initiator. Both bimetallic iron–palladium (Fe–Pd) and titania (TiO2) nanoparticles (NP) were anchored on the grafted nanofibers via the carboxylate groups by in situ and ex situ synthesis. The Fe–Pd and nitrogen-doped TiO2 nanoparticles were subsequently used for dechlorination and oxidation of target pollutants (dieldrin, chlorpyrifos, diuron, and fipronil) to benign products. Structural and chemical characterizations of the composites were done using various techniques. These include surface area and porosity analyzer (ASAP) using the technique by Brunner Emmett Teller (BET), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM) analyses were done. After dechlorination, the transformation products (TPs) for dieldrin, chlorpyrifos, diuron, and fipronil were obtained and identified using two-dimensional gas chromatography (time-of-flight) with a mass spectrometer detector (GCxGC-TOFMS). Analysis of total organic carbon (TOC) was carried out and used to extrapolate percentage mineralization. Experimental results showed that dechlorination efficiencies of 96, 93, 96, and 90 % for 1, 2, 2, and 3 h treatment period were respectively achieved for 5 ppm solutions of dieldrin, chlorpyrifos, diuron, and fipronil. The dechlorination of dieldrin, diuron, and fipronil follows first-order kinetics while that of chlorpyrifos followed pseudo-first order. Mineralization performance of 34 to 45 % were recorded when Fe–Pd was used, however upon electrospinning, doping, and grafting (Ag/PAN/PVDF-g-PAA-TiO2/Fe–Pd composite); it significantly increased to 99.9999 %. This composite reveals great potential for dechlorination and mineralization of pesticides in contaminated water.

Original languageEnglish
Pages (from-to)20214-20231
Number of pages18
JournalEnvironmental Science and Pollution Research
Volume23
Issue number20
DOIs
Publication statusPublished - 1 Oct 2016

Keywords

  • Composite
  • Dechlorination
  • Electrospinning
  • Nanofibers
  • Pesticides
  • Photodegradation

ASJC Scopus subject areas

  • Environmental Chemistry
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Electrospun and functionalized PVDF/PAN nanocatalyst-loaded composite for dechlorination and photodegradation of pesticides in contaminated water'. Together they form a unique fingerprint.

Cite this