Electrocatalytic efficiency of carbon nitride supported gold nanoparticle based sensor for iodide and cysteine detection

Chandan Saha, Sarit K. Ghosh, Pooja Kumari, Venkata K. Perla, Harishchandra Singh, Kaushik Mallick

Research output: Contribution to journalArticlepeer-review

Abstract

Extensive investigations are being conducted on gold nanoparticles focusing on their applications in biosensors, laser phototherapy, targeted drug delivery and bioimaging utilizing advanced detection techniques. In this work, an electrochemical sensor was developed based on graphite carbon nitride supported gold nanoparticles. Carbon nitride supported gold nanoparticles (Au–CN) was synthesized by applying a deposition-precipitation route followed by a chemical reduction technique. The composite system was characterized by X-ray diffraction and X-ray photo electron spectroscopy methods. Electron microscopy analysis confirmed the formation of gold nanoparticles within the size range of 5–15 nm on the carbon nitride support. Carbon nitride supported gold based sensor was employed for the electrochemical detection of iodide ion and L-cysteine. The limit of detection and sensitivity of the sensor was attained 8.9 μM and 0.96 μAμM⁻1cm⁻2, respectively, for iodide ion, while 0.48 μM and 5.8 μAμM⁻1cm⁻2, respectively, was achieved for the recognition of cysteine. Furthermore, a paper-based electrochemical device was developed using the Au–CN hybrid system that exhibited promising results in detecting iodide ions, highlighting its potential for economic and portable device applications.

Original languageEnglish
Article number115660
JournalAnalytical Biochemistry
Volume696
DOIs
Publication statusPublished - Jan 2025

Keywords

  • Carbon nitride
  • Electrochemical detection
  • Gold nanoparticles
  • Iodide ion and cysteine detection
  • Paper based device

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Electrocatalytic efficiency of carbon nitride supported gold nanoparticle based sensor for iodide and cysteine detection'. Together they form a unique fingerprint.

Cite this