Abstract
Nowadays, the alarming growing interest in providing a solution to increasing concentration of atmospheric carbon dioxide (CO2) and the associated pollution has attracted global attention. The consequential effects of CO2 are detrimental to the environment owing to the continuous depletion of carbon-emitting fossil fuels. Photocatalytic CO2 reduction (CO2R) to valuable chemicals and fuels is one the promising alternative option to mitigate the global menace instigated by CO2 emissions. If the strategies for enhancing the CO2R are unavailable, inefficient, or inappropriate, then efficiency conversion CO2 to valuable products can become problematic. In that case, the emission of CO2 results in synchronizing upsurge in the global-mean air surface temperature on the earth and sea levels from 1980 to 2100. This study presents different strategies for boosting the photocatalytic performance of 2D graphitic carbon nitride (g-C3N4) for CO2R reaction. The first part consists of the fundamental principles of photocatalysis. The second part presents some answers to the question: what governs the mechanism of photocatalytic CO2R? The existing literature lack comprehensive information about the strategical influence of available reactor designs on the photoactivity of 2D g-C3N4 for CO2 conversion to energy-rich chemicals and ways to improve them as discussed in this study. This was then followed by strategies about the synthetic methods for enhancing photocatalytic CO2R over 2D g-C3N4 materials before the discussion of the strategies for enhancing the CO2 photoreduction on the 2D g-C3N4 nanomaterials. Some groups of g-C3N4 nanomaterials for photoreduction of CO2R were also discussed. Unlike the previous reviews in the field, the present study presents some innovation to bridge the knowledge gaps of the previous reviews and corresponding insight thereof. For future breakthroughs, this study also explains some problems with the interpretation in the field. We also highlight insights into innovation on exclusion and inclusion criteria about the performance metrics and present some queries, concerns, and problems with the previous studies. The concluding part consists of research outlooks, including commonly overlooked challenges and future perspectives for ensuring highly efficient strategies, applications of 2D g-C3N4 photocatalysts, and CO2 conversion to meet industrial scale expectations. The present study hypothesized that considering the current technological age, the experiment should go beyond presenting only illustration and analysis about the band energy, but the detailed explanation/information about the pathways of the various products formed using molecular dynamics system and artificial intelligence aspects should be combined in the future studies.
Original language | English |
---|---|
Article number | 100605 |
Journal | Materials Today Chemistry |
Volume | 23 |
DOIs | |
Publication status | Published - Mar 2022 |
Keywords
- 2D graphitic carbon nitride photocatalysts
- Atmospheric carbon dioxide
- Performance metrics
- Photocatalytic reduction of CO
- Valuable fuels and chemical
ASJC Scopus subject areas
- Catalysis
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Polymers and Plastics
- Colloid and Surface Chemistry
- Materials Chemistry