TY - GEN
T1 - Efficiency enhancement of a small scale closed solar thermal brayton cycle by a combined simple organic rankine cycle
AU - Riazi, H.
AU - Ahmed, N. A.
PY - 2012
Y1 - 2012
N2 - In this paper efficiency enhancement of a small scale closed solar thermal Brayton cycle is investigated by combining it to a simple organic Rankine cycle. Brayton power cycles are generally known as the enabling technology for high temperature solar power towers due to their higher efficiencies compared to other power cycles. Unlike conventional solarthermal plants, which concentrate the sun's energy to generate steam for driving a turbine, the Brayton thermodynamic does not use water. Instead, the concentrated solar energy is used to heat compressed air, which then expands through a gas turbine to generate power. Irreversible loss in compressor and turbine, the operating temperature of solar collector and recuperator effectiveness are the main features that limit the net power output of the system which should be considered and analyzed. The exhaust of the gas turbine is still at high temperature that should be cooled down before entering the compressor. Thus, this heat can be utilized to operate a low temperature Rankine cycle and increase the system efficiency and power generation. Operating points of off the shelf micro-turbines and steam turbine with parabolic solar dish concentrator of various concentrating ratios are considered. Thermodynamic analysis is applied, by using the first and second law of thermodynamics, to obtain the optimum temperature of solar collector, minimum irreversibility rates to maximize the efficiency and net power output of the system at various steady-state conditions. Results show that for the closed solar thermal Brayton cycle the maximum overall first law efficiency of the system can be increased of more than 5% by combining a simple Rankine cycle to recover the exhaust heat and a significant 20% increase in the second law efficicency. The system efficiency is related to the solar concentration ratio with an optimum operating temperature and the choice of micro-turbine. On this basis, both the overall efficiency and the total output power may reach their maximum value by optimizing the pressure ratio. In a small scale closed solar thermal Brayton cycle combined by a Rankine cycle with a micro turbine operating at its highest compressor efficiency, the operating conditions can be optimized in such a way that the system produces maximum net power output or having the highest overall efficiency.
AB - In this paper efficiency enhancement of a small scale closed solar thermal Brayton cycle is investigated by combining it to a simple organic Rankine cycle. Brayton power cycles are generally known as the enabling technology for high temperature solar power towers due to their higher efficiencies compared to other power cycles. Unlike conventional solarthermal plants, which concentrate the sun's energy to generate steam for driving a turbine, the Brayton thermodynamic does not use water. Instead, the concentrated solar energy is used to heat compressed air, which then expands through a gas turbine to generate power. Irreversible loss in compressor and turbine, the operating temperature of solar collector and recuperator effectiveness are the main features that limit the net power output of the system which should be considered and analyzed. The exhaust of the gas turbine is still at high temperature that should be cooled down before entering the compressor. Thus, this heat can be utilized to operate a low temperature Rankine cycle and increase the system efficiency and power generation. Operating points of off the shelf micro-turbines and steam turbine with parabolic solar dish concentrator of various concentrating ratios are considered. Thermodynamic analysis is applied, by using the first and second law of thermodynamics, to obtain the optimum temperature of solar collector, minimum irreversibility rates to maximize the efficiency and net power output of the system at various steady-state conditions. Results show that for the closed solar thermal Brayton cycle the maximum overall first law efficiency of the system can be increased of more than 5% by combining a simple Rankine cycle to recover the exhaust heat and a significant 20% increase in the second law efficicency. The system efficiency is related to the solar concentration ratio with an optimum operating temperature and the choice of micro-turbine. On this basis, both the overall efficiency and the total output power may reach their maximum value by optimizing the pressure ratio. In a small scale closed solar thermal Brayton cycle combined by a Rankine cycle with a micro turbine operating at its highest compressor efficiency, the operating conditions can be optimized in such a way that the system produces maximum net power output or having the highest overall efficiency.
UR - http://www.scopus.com/inward/record.url?scp=84887279364&partnerID=8YFLogxK
U2 - 10.1115/IMECE2012-88503
DO - 10.1115/IMECE2012-88503
M3 - Conference contribution
AN - SCOPUS:84887279364
SN - 9780791845226
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
SP - 1773
EP - 1779
BT - Energy
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
Y2 - 9 November 2012 through 15 November 2012
ER -