TY - JOUR
T1 - Effects of photobiomodulation on mitochondrial function in diabetic adipose-derived stem cells in vitro
AU - Fallahi, Faezeh
AU - Mostafavinia, Atarodalsadat
AU - sharifi, Zahranadia
AU - Mohaghegh Shalmani, Leila
AU - Amini, Abdollah
AU - Ahmadi, Houssein
AU - Omidi, Hamidreza
AU - Hajihosseintehrani, Masoumeh
AU - Bayat, Sahar
AU - Hamblin, Michael R.
AU - Chien, Sufan
AU - Bayat, Mohammad
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/1/15
Y1 - 2023/1/15
N2 - Herein are reported the effects of photobiomodulation (PBM) on adenosine triphosphate (ATP) and reactive oxygen species (ROS) quantification and mitochondria membrane potential (MMP) of the mitochondria of diabetic adipose-derived stem cells (ADSCs) in vitro. Additionally, the expression of PTEN-induced kinase 1 (PINK1) and RBR E3 ubiquitin-protein ligase (PARKIN) genes, which are involved in mitochondrial quality, were quantified. First, type one diabetes was induced in 10 rats. The rats were then kept for 1 month, after which fat tissue was excised from subcutaneous regions, and stem cells were selected from the fat, characterized as ADSC, and cultivated and increased in elevated sugar conditions in vitro; these samples were considered diabetic-ADSC. Two groups were formed, namely, diabetic-control-ADSC and PBM–diabetic-ADSC. ATP, ROS quantification, and MMP of mitochondria of diabetic ADSCs in vitro were measured, and the expression of PINK1 and Parkin genes was quantified in vitro. The results revealed that PBM significantly increased ATP quantification (p = 0.05) and MMP activity (p = 0.000) in diabetic-ADSCs in vitro compared to the control diabetic-ADSCs; however, it significantly decreased ROS quantification (p = 0.002) and PINK1(p = 0.003) and PARKIN gene expression (p = 0.046) in diabetic-ADSCs. The current findings indicate for the first time that PBM has the potential to maintain the function and quality of mitochondrial diabetic-ADSCs by significantly increasing ATP quantification and MMP activity in diabetic-ADSCs in vitro while significantly decreasing ROS quantification and PINK1 and PARKIN gene expression, making PBM an attractive candidate for use in improving the efficacy of autologous stem cell remedies for diabetic patients with infected diabetic foot ulcers.
AB - Herein are reported the effects of photobiomodulation (PBM) on adenosine triphosphate (ATP) and reactive oxygen species (ROS) quantification and mitochondria membrane potential (MMP) of the mitochondria of diabetic adipose-derived stem cells (ADSCs) in vitro. Additionally, the expression of PTEN-induced kinase 1 (PINK1) and RBR E3 ubiquitin-protein ligase (PARKIN) genes, which are involved in mitochondrial quality, were quantified. First, type one diabetes was induced in 10 rats. The rats were then kept for 1 month, after which fat tissue was excised from subcutaneous regions, and stem cells were selected from the fat, characterized as ADSC, and cultivated and increased in elevated sugar conditions in vitro; these samples were considered diabetic-ADSC. Two groups were formed, namely, diabetic-control-ADSC and PBM–diabetic-ADSC. ATP, ROS quantification, and MMP of mitochondria of diabetic ADSCs in vitro were measured, and the expression of PINK1 and Parkin genes was quantified in vitro. The results revealed that PBM significantly increased ATP quantification (p = 0.05) and MMP activity (p = 0.000) in diabetic-ADSCs in vitro compared to the control diabetic-ADSCs; however, it significantly decreased ROS quantification (p = 0.002) and PINK1(p = 0.003) and PARKIN gene expression (p = 0.046) in diabetic-ADSCs. The current findings indicate for the first time that PBM has the potential to maintain the function and quality of mitochondrial diabetic-ADSCs by significantly increasing ATP quantification and MMP activity in diabetic-ADSCs in vitro while significantly decreasing ROS quantification and PINK1 and PARKIN gene expression, making PBM an attractive candidate for use in improving the efficacy of autologous stem cell remedies for diabetic patients with infected diabetic foot ulcers.
KW - Adenosine triphosphate
KW - Adipose-derived stem cells
KW - Diabetes mellitus
KW - In vitro
KW - Mitochondria membrane potential
KW - PTEN-induced kinase 1
KW - Photobiomodulation
KW - RBR E3 ubiquitin-protein ligase
KW - Rats
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=85138091979&partnerID=8YFLogxK
U2 - 10.1016/j.saa.2022.121835
DO - 10.1016/j.saa.2022.121835
M3 - Article
C2 - 36116412
AN - SCOPUS:85138091979
SN - 1386-1425
VL - 285
JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
M1 - 121835
ER -