Effects of milling time on the structural and morphological features of Si-Based refractory compounds derived from selected Agro-Wastes

Adeolu Adesoji Adediran, Kenneth Kanayo Alaneme, Isiaka Oluwole Oladele, Esther Titilayo Akinlabi, Bamidele Lawrence Bayode

Research output: Contribution to journalConference articlepeer-review

5 Citations (Scopus)

Abstract

The effects of milling time on the structural and morphological features of Si-based refractory compounds (SBRC) derived from selected agro-wastes (bamboo leaves- BL and coconut shell-CS) are reported. The processing of the SBRC was done using the controlled environment of a conventional furnace at a heating rate of 10°/min between 900 and 1650 °C. The SBRC was then placed in 250 ml vial containing zirconia balls as grinding media of 8 mm in diameter to mill in an argon atmosphere (ultra-pure with 99.98% wt, < 3 ppm O2) using a planetary mill, Retsch, with a speed of 300 rpm. A ball-to-powder ratio (BPR) of 10:1 with 3 wt% of ethanol as process control agent (PCA) were used. The optimum milling time used was 25 h at a variation of 5 h. The morphological features were examined using a scanning electron microscope (SEM/EDX) and X-ray diffraction (XRD). The SEM results revealed a good dispersion of SBRC in the network of the BL and CS respectively. SiC precipitating as moissanite phase being a polytype of SiC with cubic structure was revealed from the XRD spectrum for BL sample. Also, other intermetallic phases were evident from all the samples under different milling time. It is evident that size grows with milling time due to high plastic deformation. It was observed that the milling time influenced, to a significant extent, the dislocation density. The attainment of a nanometer scale particle sizes was achieved using this method. The SBRC shows a good potential as nano-reinforcement materials for the development of aluminium matrix composites.

Original languageEnglish
Pages (from-to)928-933
Number of pages6
JournalMaterials Today: Proceedings
Volume38
DOIs
Publication statusPublished - 1 Jan 2021
Event2020 International Symposium on Nanostructured, Nanoengineered and Advanced Materials, ISNNAM 2020 - Gold Reef City, South Africa
Duration: 30 Apr 20203 May 2020

Keywords

  • Agro-wastes
  • Ball milling
  • Morphology
  • Polytype
  • SiC
  • Structural

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Effects of milling time on the structural and morphological features of Si-Based refractory compounds derived from selected Agro-Wastes'. Together they form a unique fingerprint.

Cite this