Effect of process parameters on surface roughness during dry and flood milling of Ti-6A-l4V

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

This study investigated the effect of spindle speed, depth of cut and the milling conditions on the surface roughness of milled Ti6Al4V. Milling was conducted in dry and flood condition while varying spindle speed from 120 to 180 rev/min, depth of cut ranging from 1 to 2 mm as the feed rate was kept constant at 4.6 mm/min. The surface temperature was also measured during milling operation. It was found that during dry milling the surface roughness increased with increment of spindle speed where a maximum surface roughness value of 0.35 μm was recorded at 180 rev/min. During flood milling dry milling, the surface roughness increased with the increase of spindle speed, reaching a maximum of 0.25 μm at 180 rev/min. The depth of cut also had the same impact as spindle speed as it was found that during both dry and flood milling, the surface roughness increased with increment of depth of cut. Flood milling generated smoother milled surface as opposed to dry milling.

Original languageEnglish
Title of host publication2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages144-147
Number of pages4
ISBN (Electronic)9781538642979
DOIs
Publication statusPublished - 17 Apr 2018
Event9th IEEE International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2018 - Cape Town, South Africa
Duration: 10 Feb 201813 Feb 2018

Publication series

Name2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2018
Volume2018-January

Conference

Conference9th IEEE International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2018
Country/TerritorySouth Africa
CityCape Town
Period10/02/1813/02/18

Keywords

  • Ti-6Al-4V
  • depth of cut
  • dry milling
  • flood milling
  • spindle speed
  • surface roughness

ASJC Scopus subject areas

  • Artificial Intelligence
  • Industrial and Manufacturing Engineering
  • Ceramics and Composites
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Effect of process parameters on surface roughness during dry and flood milling of Ti-6A-l4V'. Together they form a unique fingerprint.

Cite this