TY - JOUR
T1 - Effect of different catalyst supports on the quality, yield and morphology of carbon nanotubes produced from waste polypropylene plastics
AU - Modekwe, Helen Uchenna
AU - Mamo, Messai Adenew
AU - Moothi, Kapil
AU - Daramola, Michael Olawale
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/6
Y1 - 2021/6
N2 - The role of the effect of the support on the reactivity of heterogeneous catalysts cannot be over-emphasized. Therefore, the study documented in this article investigated the effect of different metal oxide supports (MgO, CaO and TiO2 ) and mixed oxide supports (CaTiO3 ) on the performance of a bimetallic NiMo catalyst prepared via the sol–gel method during the catalytic growth of carbon nanotubes (CNTs) from waste polypropylene (PP). Waste PP was pyrolyzed at 700◦ C in a single-stage chemical vapor deposition reactor and off-gas was utilized in-situ as a cheap carbon feedstock for the growth of CNTs under similar conditions for all the prepared NiMo catalysts (supported and unsupported). The structures of the prepared catalysts and deposited carbon were extensively characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), etc. The catalytic performance of NiMo supported and unsupported catalysts was evaluated in terms of the yield, purity, and morphology of synthesized CNTs. The results revealed that the stabilizing role of supports is fundamental in preventing nanoparticle agglomeration and aggregation, thereby resulting in improved yield and quality of CNTs. Supported NiMo catalysts produced better aligned graphitic and high-quality CNTs. The NiMo/CaTiO3 catalyst produced the highest carbon of 40.0%, while unsupported NiMo produced low-quality CNTs with the lowest carbon yield of 18.4%. Therefore, the type of catalyst support and overall stability of catalytic materials play significant roles in the yield and quality of CNTs produced from waste PP.
AB - The role of the effect of the support on the reactivity of heterogeneous catalysts cannot be over-emphasized. Therefore, the study documented in this article investigated the effect of different metal oxide supports (MgO, CaO and TiO2 ) and mixed oxide supports (CaTiO3 ) on the performance of a bimetallic NiMo catalyst prepared via the sol–gel method during the catalytic growth of carbon nanotubes (CNTs) from waste polypropylene (PP). Waste PP was pyrolyzed at 700◦ C in a single-stage chemical vapor deposition reactor and off-gas was utilized in-situ as a cheap carbon feedstock for the growth of CNTs under similar conditions for all the prepared NiMo catalysts (supported and unsupported). The structures of the prepared catalysts and deposited carbon were extensively characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), etc. The catalytic performance of NiMo supported and unsupported catalysts was evaluated in terms of the yield, purity, and morphology of synthesized CNTs. The results revealed that the stabilizing role of supports is fundamental in preventing nanoparticle agglomeration and aggregation, thereby resulting in improved yield and quality of CNTs. Supported NiMo catalysts produced better aligned graphitic and high-quality CNTs. The NiMo/CaTiO3 catalyst produced the highest carbon of 40.0%, while unsupported NiMo produced low-quality CNTs with the lowest carbon yield of 18.4%. Therefore, the type of catalyst support and overall stability of catalytic materials play significant roles in the yield and quality of CNTs produced from waste PP.
KW - Carbon nanotubes
KW - Catalyst support
KW - NiMo catalyst
KW - Waste plastics
KW - Waste polypropylene
UR - http://www.scopus.com/inward/record.url?scp=85106736133&partnerID=8YFLogxK
U2 - 10.3390/catal11060692
DO - 10.3390/catal11060692
M3 - Article
AN - SCOPUS:85106736133
SN - 2073-4344
VL - 11
JO - Catalysts
JF - Catalysts
IS - 6
M1 - 692
ER -