Abstract
In the present study, the synthesis of water-soluble copper-doped CdSe nanoparticles (NPs) via a low cost, facile, and environmentally benign method is reported. Simple reagents such as selenium powder, cadmium chloride, and copper sulphate were used as selenium, cadmium, and copper precursor, respectively, while l-cysteine was used as a capping ligand without the use of an additional stabiliser. The as-synthesised copper-doped CdSe NPs were characterised using ultraviolet (UV-Vis) absorption and photoluminescence (PL) spectroscopy, Fourier-transform infrared spectroscopy, and transmission electron microscopy. By varying the dopant concentration, the temporal evolution of the optical properties and the shape of the nanocrystals were investigated. The observation and the results showed that the colour of the solution changed rapidly from orange to black, and the PL shifted to a longer wavelength at the high dopant concentration. The micrographic images revealed that the as-synthesised materials are small and could be used for bio labelling.
Original language | English |
---|---|
Pages (from-to) | 805-810 |
Number of pages | 6 |
Journal | Green Processing and Synthesis |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2021 |
Keywords
- copper
- doping
- green synthesis
- photoluminescence
- quantum dots
ASJC Scopus subject areas
- Environmental Chemistry
- General Chemical Engineering
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Industrial and Manufacturing Engineering
- Health, Toxicology and Mutagenesis