TY - JOUR
T1 - Eco-friendly synthesis of glutathione-capped CdTe/CdSe/ZnSe core/double shell quantum dots
T2 - Their cytotoxicity and genotoxicity effects on Chinese hamster ovary cells
AU - Monaheng, Neo Mervyn
AU - Parani, Sundararajan
AU - Gulumian, Mary
AU - Oluwafemi, Oluwatobi Samuel
N1 - Publisher Copyright:
© 2019 The Royal Society of Chemistry.
PY - 2019
Y1 - 2019
N2 - In this work, we report green one-pot synthesis, cytotoxicity and genotoxicity of glutathione-capped CdTe/CdSe/ZnSe heterostructured quantum dots (QDs) using a label-free xCELLigence RTCA system as well as the Cytokinesis Blocked Micronucleus assay. The as-synthesised nanocrystals displayed good optical properties and were spherical in shape with an average particle diameter of 5.9 ± 1.13 nm. The intracellular uptake study showed that most of the as-synthesised glutathione stabilized QDs penetrated the cell membranes and were found randomly localized in the cytoplasm of Chinese Hamster Ovary (CHO) cells even at a lower concentration of 0.5 μg ml-1. The QDs showed no cytotoxicity to Chinese Hamster Ovary (CHO) cells at six concentrations tested (0.5, 1.0, 2.5, 5.0, 10, and 25 μg ml-1). However, at 50 and 100 μg ml-1 the material was cytotoxic at significant p values of 3.1 × 10-4 and 9.47 × 10-10, respectively. Likewise, the material was found to be genotoxic at almost all concentrations tested. The genotoxicity of the nanocrystals in question confers unfavorable potential to all complex heterostructured nanocrystals. Hence, more studies are needed to negate the prevailing assumption that multishell passivation provides enough protection against intracellular QD core dissolution or the production of reactive oxygen species (ROS) before these nanomaterials can be used in vivo for human health applications.
AB - In this work, we report green one-pot synthesis, cytotoxicity and genotoxicity of glutathione-capped CdTe/CdSe/ZnSe heterostructured quantum dots (QDs) using a label-free xCELLigence RTCA system as well as the Cytokinesis Blocked Micronucleus assay. The as-synthesised nanocrystals displayed good optical properties and were spherical in shape with an average particle diameter of 5.9 ± 1.13 nm. The intracellular uptake study showed that most of the as-synthesised glutathione stabilized QDs penetrated the cell membranes and were found randomly localized in the cytoplasm of Chinese Hamster Ovary (CHO) cells even at a lower concentration of 0.5 μg ml-1. The QDs showed no cytotoxicity to Chinese Hamster Ovary (CHO) cells at six concentrations tested (0.5, 1.0, 2.5, 5.0, 10, and 25 μg ml-1). However, at 50 and 100 μg ml-1 the material was cytotoxic at significant p values of 3.1 × 10-4 and 9.47 × 10-10, respectively. Likewise, the material was found to be genotoxic at almost all concentrations tested. The genotoxicity of the nanocrystals in question confers unfavorable potential to all complex heterostructured nanocrystals. Hence, more studies are needed to negate the prevailing assumption that multishell passivation provides enough protection against intracellular QD core dissolution or the production of reactive oxygen species (ROS) before these nanomaterials can be used in vivo for human health applications.
UR - http://www.scopus.com/inward/record.url?scp=85076455166&partnerID=8YFLogxK
U2 - 10.1039/c9tx00113a
DO - 10.1039/c9tx00113a
M3 - Article
AN - SCOPUS:85076455166
SN - 2045-452X
VL - 8
SP - 868
EP - 874
JO - Toxicology Research
JF - Toxicology Research
IS - 6
ER -