Domination with exponential decay

Peter Dankelmann, David Day, David Erwin, Simon Mukwembi, Henda Swart

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

Let G be a graph and S ⊆ V (G). For each vertex u ∈ S and for each v ∈ V (G) - S, we define over(d, -) (u, v) = over(d, -) (v, u) to be the length of a shortest path in 〈 V (G) - (S - {u}) 〉 if such a path exists, and ∞ otherwise. Let v ∈ V (G). We define wS (v) = ∑u ∈ S frac(1, 2over(d, -) (u, v) - 1) if v / ∈ S, and wS (v) = 2 if v ∈ S. If, for each v ∈ V (G), we have wS (v) ≥ 1, then S is an exponential dominating set. The smallest cardinality of an exponential dominating set is the exponential domination number, γe (G). In this paper, we prove: (i) that if G is a connected graph of diameter d, then γe (G) ≥ (d + 2) / 4, and, (ii) that if G is a connected graph of order n, then γe (G) ≤ frac(2, 5) (n + 2).

Original languageEnglish
Pages (from-to)5877-5883
Number of pages7
JournalDiscrete Mathematics
Volume309
Issue number19
DOIs
Publication statusPublished - 6 Oct 2009
Externally publishedYes

Keywords

  • Distance
  • Domination

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

Fingerprint

Dive into the research topics of 'Domination with exponential decay'. Together they form a unique fingerprint.

Cite this