DNA barcoding reveals micro-evolutionary changes and river system-level phylogeographic resolution of African silver catfish, Schilbe intermedius (Actinopterygii: Siluriformes: Schilbeidae) from seven populations across different African river systems

Herman F. Van der Bank, Richard Greenfield, Barnabas H. Daru, Kowiyou Yessoufou

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Background. Under the tropics, less than 40% of known fishes are identified to species-level. Further, the ongoing global change poses unprecedented threat to biodiversity, and several taxa are likely to go extinct even before they could be described. Traditional ecological theory suggests that species would escape extinction risk posed by global threats (e.g., climate change) only by migrating to new environments. In this study, we hypothesise that micro-evolutionary changes (evolution within species and populations) are also important mechanisms for the survival of Schilbe intermedius in Africa, a continent subjected to uneven distribution of climate severity. Materials and methods. Using the mitochondrial cytochrome c oxidase subunit I (COI) gene, known as animal DNA barcode, we tested this hypothesis by analysing the genetic diversity and phylogenetic relations between seven populations of S. intermedius across different African river systems. Results. We reveal a clear geographical patterning in genetic variations, with three clear clusters (southern Africa, eastern Africa, and western Africa). In southern Africa, the South African population is distinct from that of Namibia and Botswana. In addition, within Nigerian populations of silver catfish, two sub-clusters emerged from two isolated river systems. We suggest that the phylogeographic pattern within African silver catfish populations mirror the past effects of selection and gene flow, and that the split within Nigerian silver catfish populations might be the result of micro-evolutionary adaptive responses to local selection pressures. Conclusion. We suggest that the strong genetic difference in African silver catfish among geographically isolated river systems might be the result of in situ micro-evolutionary adaptive responses to changing environments, and that DNA barcode has potential beyond species delimitation.

Original languageEnglish
Pages (from-to)307-320
Number of pages14
JournalActa Ichthyologica et Piscatoria
Volume42
Issue number4
DOIs
Publication statusPublished - 2012

Keywords

  • Adaptation
  • DNA barcode
  • Population genetic differentiation
  • Species delimitation

ASJC Scopus subject areas

  • Aquatic Science

Fingerprint

Dive into the research topics of 'DNA barcoding reveals micro-evolutionary changes and river system-level phylogeographic resolution of African silver catfish, Schilbe intermedius (Actinopterygii: Siluriformes: Schilbeidae) from seven populations across different African river systems'. Together they form a unique fingerprint.

Cite this