Discretization schemes Comparison for the Greenhouse Temperature Model

Rahul Singhal, Rahul Ravichandran, Rajesh Kumar, Satyanarayana Neeli

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

A greenhouse is a covered structure that protects the plants from extensive external environment and creates a suitable growth environment using precise control strategy. In this paper, we suggest a suitable discretization method for the greenhouse temperature model by comparing conventionally used methods Runge-Kutta 4 (RK4) and Euler method with other discretization methods which includes explicit and embedded methods. These methods are compared on the basis of computational time and mean absolute error (MAE) as the performance criteria. Different methods have different computational time based on the complexity of its calculations, and their accuracy depends on the order of the method that is in consideration. On comparing the different methods, it is found that the Euler method is more suitable for the same sampling time of data with least computational burden, whereas with increasing sampling time Heun's method gives much better results.

Original languageEnglish
Title of host publication8th IEEE India International Conference on Power Electronics, IICPE 2018
PublisherIEEE Computer Society
ISBN (Electronic)9781538649961
DOIs
Publication statusPublished - 2 Jul 2018
Externally publishedYes
Event8th IEEE India International Conference on Power Electronics, IICPE 2018 - Jaipur, India
Duration: 13 Dec 201815 Dec 2018

Publication series

NameIndia International Conference on Power Electronics, IICPE
Volume2018-December
ISSN (Print)2160-3162
ISSN (Electronic)2160-3170

Conference

Conference8th IEEE India International Conference on Power Electronics, IICPE 2018
Country/TerritoryIndia
CityJaipur
Period13/12/1815/12/18

Keywords

  • Discretization
  • Embedded methods
  • Explicit methods
  • Runga kutta methods

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Discretization schemes Comparison for the Greenhouse Temperature Model'. Together they form a unique fingerprint.

Cite this