TY - JOUR
T1 - Diamondiferous and barren eclogites and pyroxenites from the western Kaapvaal craton record subduction processes and mantle metasomatism, respectively
AU - Aulbach, Sonja
AU - Viljoen, K. S.
AU - Gerdes, Axel
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/9
Y1 - 2020/9
N2 - Mineral major and trace elements combined with Sr isotopes of clinopyroxene are used to unravel the origins and evolution of mantle eclogite and pyroxenite xenoliths from the Doornkloof-Sover orangeite dike (western Kaapvaal craton), and to investigate the generation and destruction of diamond in these rocks. Two different eclogite types are present: (1) MgO-poor eclogites (MgO = 7.3 to 14.5 wt%; n = 43) with accessory diamond ± corundum and kyanite, high garnet grossular content (median Ca# = 0.25) and clinopyroxene jadeite content (0.39). Reconstructed bulk rocks are LREE-depleted (median La 0.29 ppm) and have low median Cr2O3 (0.06 wt%) and incompatible trace-element contents (e.g. Sr, Zr, Ba, Pb, Th), and high Li and transition metal abundances. Some are characterised by stepped REE patterns or steep slopes in the MREE, similar to eclogites affected by interaction with dehydration fluids generated in subduction zones. These fluids may also have deposited diamond in typically reducing eclogite assemblages at diamond-stable pressures. (2) MgO-rich eclogites and pyroxenites (MgO = 14.0 to 20.0 wt%; n = 29), which are barren and enriched in LREE (median La 1.39 ppm), Cr2O3 (0.25 wt%) and incompatible trace elements, with lower Li and transition metal abundances than the MgO-poor group. These are typical signatures of carbonated ultramafic melt metasomatism in the mantle lithosphere. Strontium isotopic compositions vary widely in both groups, but high Cr2O3 and Ba contents are dominantly associated with 87Sr/86Sr > 0.7055. This reflects interaction with metasomatic agents remobilised from ancient lithospheric metasomes, which eventually gave rise to regional orangeite magmatism. The presence of strong positive Eu anomalies in both groups, including two pyroxenites, requires low-pressure igneous protoliths, presumably derived from a ca. 3 Ga spreading ridge, as reported for other eclogite materials from the western Kaapvaal craton. Based on the proportions of MgO-poor and –rich eclogites and pyroxenites, approximately 40% of the diamond inventory were destroyed by mantle metasomatism centred at ~135 ± 15 km depth, overlapping a low-velocity anomaly (mid-lithospheric discontinuity). Two diamondiferous orangeites ≤20 km from Doornkloof-Sover contain significantly different eclogite xenolith populations: At Newlands, MgO-poor diamondiferous eclogites are present in addition to barren MgO-rich ones and pyroxenites, suggesting that the host orangeite sampled a source region equally affected by diamond-destructive mantle metasomatism, whereas at Bellsbank, all eclogites are MgO-poor and LREE-depleted. This may explain higher diamond grades reported for this locality compared to Newlands or Doornkloof-Sover.
AB - Mineral major and trace elements combined with Sr isotopes of clinopyroxene are used to unravel the origins and evolution of mantle eclogite and pyroxenite xenoliths from the Doornkloof-Sover orangeite dike (western Kaapvaal craton), and to investigate the generation and destruction of diamond in these rocks. Two different eclogite types are present: (1) MgO-poor eclogites (MgO = 7.3 to 14.5 wt%; n = 43) with accessory diamond ± corundum and kyanite, high garnet grossular content (median Ca# = 0.25) and clinopyroxene jadeite content (0.39). Reconstructed bulk rocks are LREE-depleted (median La 0.29 ppm) and have low median Cr2O3 (0.06 wt%) and incompatible trace-element contents (e.g. Sr, Zr, Ba, Pb, Th), and high Li and transition metal abundances. Some are characterised by stepped REE patterns or steep slopes in the MREE, similar to eclogites affected by interaction with dehydration fluids generated in subduction zones. These fluids may also have deposited diamond in typically reducing eclogite assemblages at diamond-stable pressures. (2) MgO-rich eclogites and pyroxenites (MgO = 14.0 to 20.0 wt%; n = 29), which are barren and enriched in LREE (median La 1.39 ppm), Cr2O3 (0.25 wt%) and incompatible trace elements, with lower Li and transition metal abundances than the MgO-poor group. These are typical signatures of carbonated ultramafic melt metasomatism in the mantle lithosphere. Strontium isotopic compositions vary widely in both groups, but high Cr2O3 and Ba contents are dominantly associated with 87Sr/86Sr > 0.7055. This reflects interaction with metasomatic agents remobilised from ancient lithospheric metasomes, which eventually gave rise to regional orangeite magmatism. The presence of strong positive Eu anomalies in both groups, including two pyroxenites, requires low-pressure igneous protoliths, presumably derived from a ca. 3 Ga spreading ridge, as reported for other eclogite materials from the western Kaapvaal craton. Based on the proportions of MgO-poor and –rich eclogites and pyroxenites, approximately 40% of the diamond inventory were destroyed by mantle metasomatism centred at ~135 ± 15 km depth, overlapping a low-velocity anomaly (mid-lithospheric discontinuity). Two diamondiferous orangeites ≤20 km from Doornkloof-Sover contain significantly different eclogite xenolith populations: At Newlands, MgO-poor diamondiferous eclogites are present in addition to barren MgO-rich ones and pyroxenites, suggesting that the host orangeite sampled a source region equally affected by diamond-destructive mantle metasomatism, whereas at Bellsbank, all eclogites are MgO-poor and LREE-depleted. This may explain higher diamond grades reported for this locality compared to Newlands or Doornkloof-Sover.
KW - Archaean oceanic crust
KW - Diamond formation
KW - Kimberlite-borne eclogite xenoliths
KW - Metasomatism
KW - Radiogenic isotopes
KW - Trace elements
UR - http://www.scopus.com/inward/record.url?scp=85085945822&partnerID=8YFLogxK
U2 - 10.1016/j.lithos.2020.105588
DO - 10.1016/j.lithos.2020.105588
M3 - Article
AN - SCOPUS:85085945822
SN - 0024-4937
VL - 368-369
JO - Lithos
JF - Lithos
M1 - 105588
ER -