Development of polymer/carbon nanotubes incorporated sustainable materials for manufacturing of autobrake pad

Uyor Uwa Orji, Popoola Abimbola Patricia, Aigbodion Victor Sunday, Popoola Olawale

Research output: Contribution to journalArticlepeer-review

Abstract

Although asbestos fiber is used for autobrake pad production due to its heat resistance capacity, it is associated with a challenge of health risk (cancerogenic in nature). This health risk associated with asbestos-based autobrake pads has presented polymeric materials as a better candidate for the application due to their eco-friendliness, lightweight, chemical inertness, easy of processing, etc. However, polymers are associated with low wear and low mechanical properties, which are vital properties for autobrake pads. Therefore, this study developed EP nanocomposites reinforced with a low content of carbon nanotubes (CNTs) and eggshell (ES) attached cow bone (CB) particles denoted as (ES@CB) as agro-waste/sustainable materials for the manufacturing of autobrake pads. The hybrid ternary nanocomposites were developed via solution mixing and casting. Scanning electron microscope (SEM) revealed the 1-D structure of the CNTs, and relatively spherical shapes of ES and CB particles, and microstructures of the developed nanocomposites. The nanocomposite showed a low coefficient of friction and a reduction in wear rate in the range of 1.14 × 10−4 mm3/Nm for pure EP to 5.45 × 10−6 mm3/Nm for EP/0.4wt%CNTs-10wt%ES@CB nanocomposite, while the elastic modulus and hardness increased from 1.84 GPa and 128.64 MPa for pure EP to 4.41 GPa and 252.88 MPa for EP/0.2wt%CNTs-20wt%ES@CB nanocomposite, respectively. The comparison of the wear response of the developed nanocomposites with the current asbestos-based brake pads show that the developed epoxy nanocomposites from agro-waste materials are potential option for the manufacturing of autobrake pads, which will ensure sustainability, health risk-free, and environmentally friendly.

Original languageEnglish
Pages (from-to)3227-3236
Number of pages10
JournalInternational Journal of Advanced Manufacturing Technology
Volume132
Issue number7-8
DOIs
Publication statusPublished - Jun 2024
Externally publishedYes

Keywords

  • Agro-wastes
  • Autobrake pad
  • CNTs
  • Polyester matrix
  • Sustainability

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Mechanical Engineering
  • Computer Science Applications
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Development of polymer/carbon nanotubes incorporated sustainable materials for manufacturing of autobrake pad'. Together they form a unique fingerprint.

Cite this