Development of a novel nanoformulation based on aloe vera-derived carbon quantum dot and chromium-doped alumina nanoparticle (Al2O3:Cr@Cdot NPs): evaluating the anticancer and antimicrobial activities of nanoparticles in photodynamic therapy

Merat Karimi, Mina Homayoonfal, Mostafa Zahedifar, Amirreza Ostadian, Reyhaneh Adibi, Bahareh Mohammadzadeh, Arash Raisi, Fatemeh Ravaei, Somaye Rashki, Mahsa Khakbraghi, Michael Hamblin, Zahra Kheirkhah, Ehsan Sadeghi, Majid Nejati, Hamed Mirzaei

Research output: Contribution to journalReview articlepeer-review

2 Citations (Scopus)

Abstract

The objective of this study was to synthesize a novel antibacterial and anticancer nanoformulation using aloe vera-derived carbon quantum dots (Cdot) and chromium-doped alumina nanoparticles (Al2O3:Cr/Cdot NPs) via a sol–gel method. X-ray diffraction (XRD) analysis confirmed crystalline NPs with a size range of 10–12 nm, while energy-dispersive X-ray spectroscopy (EDS) revealed their elemental composition without impurities. Fourier-transform infrared spectroscopy (FT-IR) indicated strong interactions between Cdot and Al2O3:Cr NPs, forming a robust heterostructure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images provided visual confirmation of monodisperse, spherical NPs, ensuring uniformity for further applications. Evaluation of reactive oxygen species (ROS) demonstrated superior generation of singlet oxygen and hydroxyl radicals by Al2O3:Cr/Cdot NPs, essential for photodynamic therapy. Minimum inhibitory concentration (MIC) tests revealed potent antibacterial activity against drug-resistant bacteria, inhibiting biofilm formation by 89% and 95% for MRSA and P. aeruginosa PAO1, respectively. Furthermore, the anticancer activity of Al2O3:Cr/Cdot NPs was assessed using C26 cells, demonstrating enhanced cytotoxicity upon UVA exposure. The NPs exhibited an inhibitory concentration (IC50) of 20 μg/mL without UVA exposure, decreasing to 10 μg/mL with UVA exposure, highlighting the synergistic effect of UVA light in enhancing cytotoxicity. Overall, these findings underscore the significant potential of Al2O3:Cr/Cdot NPs as multifunctional agents for addressing drug-resistant bacteria and advancing cancer therapy, offering promising avenues for nanomedicine research and development.

Original languageEnglish
Article number26
JournalCancer Nanotechnology
Volume15
Issue number1
DOIs
Publication statusPublished - Dec 2024

Keywords

  • Antibacterial activity
  • Cancer therapy
  • Carbon quantum dot
  • Chromium-doped AlO nanoparticles
  • Hydroxyl radical
  • Photodynamic therapy
  • Singlet oxygen

ASJC Scopus subject areas

  • Biomedical Engineering
  • Oncology
  • Pharmaceutical Science
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Development of a novel nanoformulation based on aloe vera-derived carbon quantum dot and chromium-doped alumina nanoparticle (Al2O3:Cr@Cdot NPs): evaluating the anticancer and antimicrobial activities of nanoparticles in photodynamic therapy'. Together they form a unique fingerprint.

Cite this