Design, Synthesis, Molecular Docking, and In Vitro Antibacterial Evaluation of Benzotriazole-Based β-Amino Alcohols and Their Corresponding 1,3-Oxazolidines

Nasseb Singh, Vidushi Abrol, Sarita Parihar, Satish Kumar, Ghazala Khanum, Jan Mohammad Mir, Alamgir Ahmad Dar, Sundeep Jaglan, Mika Sillanpää, Saleh Al-Farraj

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

In the present study, a series of benzotriazole-based β-amino alcohols were efficiently synthesized in excellent yields via aminolysis of benzotriazolated epoxides under catalyst- and solvent-free conditions. Further these β-amino alcohols were successfully utilized to synthesize the corresponding benzotriazole-based oxazolidine heterocyclic derivatives. All the synthesized compounds were characterized by various spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectroscopy for structure elucidation. The compounds were subjected to a microtiter plate-based antimicrobial assay. The antimicrobial activity results reveal that the compounds 4a, 4e, and 5f were found to be active against Staphylococcus aureus (ATCC-25923) with minimum inhibitory concentrations (MICs) of 32, 8, and 64 μM, respectively. Also, the compounds 4a, 4e, 4k, 4i, 4m, 4n, 4o, 5d, 5e, 5f, 5g, and 5h showed effective activity against Bacillus subtilis (ATCC 6633) with MICs of 64, 16, 16, 16, 64, 16, 64, 64, 32, 64, 8, and 16 μM, respectively. A biological investigation was conducted, including molecular docking of two compounds with several receptors to identify and confirm the best ligand-protein interactions. Hence, this study found a significant strategy to diversify the chemical molecules. The synthesized compounds play a potential role as an antibacterial intensifier against some pathogenic bacteria for the development of antibacterial substances.

Original languageEnglish
Pages (from-to)41960-41968
Number of pages9
JournalACS Omega
Volume8
Issue number44
DOIs
Publication statusPublished - 7 Nov 2023
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Design, Synthesis, Molecular Docking, and In Vitro Antibacterial Evaluation of Benzotriazole-Based β-Amino Alcohols and Their Corresponding 1,3-Oxazolidines'. Together they form a unique fingerprint.

Cite this