Abstract
We report the synthesis and crystal structures of three new copper(II) Schiff-base complexes. The complexes have been characterized by elemental analysis and Fourier transform infrared (FT-IR) and UV-visible spectroscopies. The X-ray diffraction (XRD) analysis reveals that complexes 1 and 3 crystallize in a monoclinic space group C2/c and 2 in a triclinic space group P1¯, each adopting a square planar geometry around the metal center. We use a density functional theory method to explore the quantum chemical properties of these complexes. The calculation proceeds with the three-dimensional (3D) crystal structure characterization of the complexes in which the calculated IR and UV-vis values are comparable to the experimental results. Charge distribution and molecular orbital analyses enabled quantum chemical property prediction of these complexes. We study the drug-likeness properties and binding potentials of the synthesized complexes. The in silico outcome showed that they could serve as permeability-glycoprotein (P-gp) and different cytochrome P450 substrates. Our calculations showed that the complexes significantly bind to cytochrome P450 3A4.
Original language | English |
---|---|
Pages (from-to) | 13704-13718 |
Number of pages | 15 |
Journal | ACS Omega |
Volume | 6 |
Issue number | 21 |
DOIs | |
Publication status | Published - 1 Jun 2021 |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering