Design and feasibility analysis of grid-connected hybrid renewable energy system: perspective of commercial buildings

T. Adefarati, G. D. Obikoya, G. Sharma, A. K. Onaolapo, K. T. Akindeji

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Green energy technologies have been widely acknowledged as a supplement to conventional power sources due to the finite nature of fossil fuels, ever-increasing load demand and GHG emissions. This paper proposes a HRES that encompasses photovoltaic, electric vehicle, battery system and grid. The viability analysis of the HRES is implemented in this paper by using the load profile of Tucson Mall, U.S. and the meteorological data from the NASA. This study seeks to create a framework for sustainable energy that enhances the performance of the conventional power system by reducing the NPC, payback period, GHG emissions, COE and energy obtained from the grid by using HOMER application. The NPC, COE, payback period and return on investment for the best configuration of the proposed HRES are $1,600,623.00, $0.0420, 4.10 years and 19.0%. The outcomes of the study demonstrate that the most feasible configuration achieved 60.38% of COE and 39.48% of NPC better than case study 1. The optimal HRES has been subjected to a sensitivity analysis to establish the influence of several parameters such as interest rate, load demand, capital cost, inflation rate, solar radiation and temperature on the COE and NPC. The findings of the study demonstrate that the PV system plays an important role in decreasing GHG emissions, NPC and COE as well as achieving the optimal operation of the HRES. The incorporation of green energy technologies into the utility grid can sustainably address the global energy crisis and improve access to electricity. The government agencies can use the findings of this study as a crucial step in increasing the proportion of green energy technology in the global’s energy mix.

Original languageEnglish
Pages (from-to)403-462
Number of pages60
JournalEnergy Systems
Volume15
Issue number1
DOIs
Publication statusPublished - Feb 2024

Keywords

  • Battery system
  • Cost of energy
  • Green energy technologies
  • Greenhouse gas emission
  • Net energy purchased
  • Photovoltaic system

ASJC Scopus subject areas

  • Modeling and Simulation
  • Economics and Econometrics
  • General Energy

Fingerprint

Dive into the research topics of 'Design and feasibility analysis of grid-connected hybrid renewable energy system: perspective of commercial buildings'. Together they form a unique fingerprint.

Cite this