Decimeter-scale mapping of carbonate-controlled trace element distribution in Neoarchean cuspate stromatolites

Matthew R. Warke, Nicholas P. Edwards, R. A. Wogelius, Phillip L. Manning, Uwe Bergmann, Victoria M. Egerton, Katalina C. Kimball, Russell J. Garwood, Nicolas J. Beukes, Stefan Schröder

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Ancient stromatolites can provide key insights into the early evolution of life on Earth. Neoarchean fenestrate stromatolites from the ∼2520 Ma Upper Nauga Formation (Transvaal Supergroup, South Africa) preserve cuspate morphologies. They possess clearly delineated support and drape structures interpreted as dolomitized microbial mat material. Petrographic observations show that the biogenic structures are composed of planar-s to non-planar ferroan dolomite, encased in ferroan calcite, including herringbone calcite textures. The cuspate stromatolites were analyzed using Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and more conventional techniques to determine: (i) whether element distributions could be distinguished in ancient stromatolites at both cm to dm scales, (ii) whether element distributions show variation between biogenic and abiogenic textures, and (iii) the sample's paragenesis. The distributions of Ca, Fe, Mn, Pb, Cu, As, Br, Al, Si, P, and S directly correspond to dolomitized stromatolitic structures and show trace element distributions are principally controlled by calcite and dolomite occurrence. Dolomite formation was mainly driven by seawater-derived fluids given the high concentrations of Fe and retention of marine shale-normalized rare earth element and yttrium (REYSN) patterns, however the spatial association of dolomite to stromatolite structures may reflect microbially-influenced mineral nucleation. Given the complexity of this sample's paragenetic evolution, trace metal distributions cannot be conclusively tied to specific metabolic pathways, bioaccumulation or passive binding, however, the results show SRS-XRF can be used for quantifiable, spatial, in-situ investigation of ancient microbialites.

Original languageEnglish
Pages (from-to)56-75
Number of pages20
JournalGeochimica et Cosmochimica Acta
Volume261
DOIs
Publication statusPublished - 15 Sept 2019

Keywords

  • Nauga Formation
  • SRS-XRF
  • Stromatolite
  • Synchrotron
  • X-Ray Fluorescence

ASJC Scopus subject areas

  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Decimeter-scale mapping of carbonate-controlled trace element distribution in Neoarchean cuspate stromatolites'. Together they form a unique fingerprint.

Cite this