Abstract
Although hematite (Fe2O3) nanoparticles are gaining attention for biomedical purposes due to their unique properties, eco-friendly synthesis using plant extracts is being explored due to toxicity concerns of the resulting material. This study explores the use of plant extracts (Dovyalis caffra leaf extracts) for the synthesis of Fe2O3 nanoparticles alongside their cytotoxicity profile using human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). The physicochemical properties of the prepared nanoparticles were established using x-ray diffraction (XRD) and microscopy techniques, confirming their crystalline nature and spherical morphology with minimal agglomeration. Using the MTT assay approach, the cytotoxicity profile of the nanoparticles revealed dose-dependent cytotoxic effects, with higher specificity towards cancer cells and very low toxicity towards the human cell line, suggesting safe usage as biomedical agents. While the standard drug 5-Fluorouracil possessed significantly higher cytotoxicity, its unwanted high toxicity towards normal human cells makes the Fe2O3 nanoparticles a better choice. These findings suggest the potential of Dovyalis caffra leaf extract-mediated Fe2O3 nanoparticles for biomedical applications, emphasizing their low toxicity towards normal human cells and specificity towards cancer cells.
Original language | English |
---|---|
Article number | 035004 |
Journal | Nano Express |
Volume | 5 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Sept 2024 |
Keywords
- Dovyalis caffra
- cell lines
- cytotoxicity
- hematite
- nanoparticles
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Materials Science (miscellaneous)
- Polymers and Plastics