TY - JOUR
T1 - Copper-Based Metal–Organic Framework
T2 - Synthesis, Characterization and Evaluation for the Hydrogenation of Furfural to Furfuryl Alcohol
AU - Moyo, Pamela S.
AU - Mehlana, Gift
AU - Matsinha, Leah C.
AU - Makhubela, Banothile C.E.
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024
Y1 - 2024
N2 - A novel Cu-MOF was synthesized at room temperature from commercially available and inexpensive reagents. The pre-catalyst was characterized using X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, inductively coupled plasma-optical emission spectroscopy, Fourier transform-infrared spectroscopy, powder X-ray diffraction, Brunauer-Emmet-Teller (BET) and scanning electron microscopy-energy dispersive X-ray spectroscopy. The Cu-MOF was characterized as microporous material with BET surface area and pore volume of 7.47 m2/g and 0.27 cm3/g, respectively, and is stable in most solvents. The MOF was evaluated as a heterogeneous catalyst for the hydrogenation of furfural to furfuryl alcohol (FA). Cu-MOF exhibited a high conversion of FF (76%) with selectivity towards FA (100%) at 140 °C, 50 bar for 24 h. The MOF was reused four consecutive times with a loss in catalytic performance. The decrease in catalytic activity could be attributed to the formation of inactive Cu(0) as revealed by HR-TEM and XPS studies. The HR-TEM of spent Cu-MOF showed a uniform particle size diameter of 3.5 nm. This work is significant in providing new strategies for the design and fabrication of highly selective MOF catalysts for the FF upgrading.
AB - A novel Cu-MOF was synthesized at room temperature from commercially available and inexpensive reagents. The pre-catalyst was characterized using X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, inductively coupled plasma-optical emission spectroscopy, Fourier transform-infrared spectroscopy, powder X-ray diffraction, Brunauer-Emmet-Teller (BET) and scanning electron microscopy-energy dispersive X-ray spectroscopy. The Cu-MOF was characterized as microporous material with BET surface area and pore volume of 7.47 m2/g and 0.27 cm3/g, respectively, and is stable in most solvents. The MOF was evaluated as a heterogeneous catalyst for the hydrogenation of furfural to furfuryl alcohol (FA). Cu-MOF exhibited a high conversion of FF (76%) with selectivity towards FA (100%) at 140 °C, 50 bar for 24 h. The MOF was reused four consecutive times with a loss in catalytic performance. The decrease in catalytic activity could be attributed to the formation of inactive Cu(0) as revealed by HR-TEM and XPS studies. The HR-TEM of spent Cu-MOF showed a uniform particle size diameter of 3.5 nm. This work is significant in providing new strategies for the design and fabrication of highly selective MOF catalysts for the FF upgrading.
KW - Furfural upgrading
KW - Furfuryl alcohol
KW - Heterogeneous catalyst
KW - Metal–organic framework
UR - http://www.scopus.com/inward/record.url?scp=85205931984&partnerID=8YFLogxK
U2 - 10.1007/s10904-024-03163-8
DO - 10.1007/s10904-024-03163-8
M3 - Article
AN - SCOPUS:85205931984
SN - 1574-1443
JO - Journal of Inorganic and Organometallic Polymers and Materials
JF - Journal of Inorganic and Organometallic Polymers and Materials
ER -