TY - JOUR
T1 - Controlled synthesis of silver-based ternary quantum dots with outstanding luminescence
AU - Mbaz, Gracia It Mwad
AU - Parani, Sundararajan
AU - Oluwafemi, Oluwatobi Samuel
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022/9
Y1 - 2022/9
N2 - Quantum dots (QDs) have attracted much attention over the past decades due to their outstanding properties. However, obtaining QDs with excellent photoluminescence and quantum yields (QYs) from their aqueous synthesis is still a big concern. We herein present a green and facile synthesis of AgInS (AIS) QDs and AgInS-ZnS (AIS-ZnS) core-shell QDs using a combination of two capping agents (glutathione and sodium citrate). The temporal evolution of the optical properties is investigated by varying the reaction time and pH of the solution. The results show that the fluorescence intensity of the QDs increases as the reaction time increase, while the emission position blue-shift as the pH of the solution increase. An outstanding photoluminescence quantum yield (PLQY) of 90% is obtained at optimized synthetic conditions. The Fourier transform Infrared studies confirm efficient passivation of the QDs by the capping agents. The XRD analysis reveals that all the materials crystallize in the tetragonal crystalline phase, while the TEM micrographs of AIS-ZnS QDs reveal a spherical shape. The EDS analysis confirms the presence of Silver, Indium, Sulphide, and Zinc elements. The reported synthetic route is facile and eco-friendly.
AB - Quantum dots (QDs) have attracted much attention over the past decades due to their outstanding properties. However, obtaining QDs with excellent photoluminescence and quantum yields (QYs) from their aqueous synthesis is still a big concern. We herein present a green and facile synthesis of AgInS (AIS) QDs and AgInS-ZnS (AIS-ZnS) core-shell QDs using a combination of two capping agents (glutathione and sodium citrate). The temporal evolution of the optical properties is investigated by varying the reaction time and pH of the solution. The results show that the fluorescence intensity of the QDs increases as the reaction time increase, while the emission position blue-shift as the pH of the solution increase. An outstanding photoluminescence quantum yield (PLQY) of 90% is obtained at optimized synthetic conditions. The Fourier transform Infrared studies confirm efficient passivation of the QDs by the capping agents. The XRD analysis reveals that all the materials crystallize in the tetragonal crystalline phase, while the TEM micrographs of AIS-ZnS QDs reveal a spherical shape. The EDS analysis confirms the presence of Silver, Indium, Sulphide, and Zinc elements. The reported synthetic route is facile and eco-friendly.
KW - AgInS
KW - AgInS-ZnS
KW - Core-shell
KW - Quantum dots
UR - http://www.scopus.com/inward/record.url?scp=85131589673&partnerID=8YFLogxK
U2 - 10.1007/s10895-022-02988-1
DO - 10.1007/s10895-022-02988-1
M3 - Article
C2 - 35678901
AN - SCOPUS:85131589673
SN - 1053-0509
VL - 32
SP - 1769
EP - 1777
JO - Journal of Fluorescence
JF - Journal of Fluorescence
IS - 5
ER -