Controlled fabrication of α-GaOOH and α-Ga 2O 3 self-assembly and its superior photocatalytic activity

Manickavachagam Muruganandham, Ramakrishnan Amutha, Mahmoud S.M.Abdel Wahed, Bashir Ahmmad, Yasushige Kuroda, Rominder P.S. Suri, Jerry J. Wu, Mika E.T. Sillanpää

Research output: Contribution to journalArticlepeer-review

99 Citations (Scopus)


In this article, we report the fabrication of gallium oxide (α-Ga 2O 3) microspheres (GOMs) by a self-assembly process. Gallium nitrate with oxalic acid in a hydrothermal process results in α-GaOOH, which was further converted into gallium oxide by calcinations at 450 °C for 3 h. We first report the formation of various morphological α-GaOOH by using the above-mentioned methodology. The influence of hydrothermal temperature and time on the crystal structure and its morphology was studied, and the results indicated that hydrothermal temperature played an important role in the final morphology of α-GaOOH. The flower-like α-GaOOH formed at 175 °C is converted into rodlike α-Ga 2O 3 after calcination at 450 °C, and the α-GaOOH microsphere and microrod formed at 200 and 225 °C retained their morphology during the calcination process, respectively. The synthesized α-GaOOH and α-Ga 2O 3 were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and nitrogen adsorption analysis. The XRD patterns indicated that well-crystallized α-GaOOH and α-Ga 2O 3 were formed in a hydrothermal and calcination process, respectively. The FE-SEM images indicated the formation of well-organized microspheres and microflowers, which were composed of nanoparticles and nanoplates, respectively. The photocatalytic degradation of Acid Orange 7 (AO7) dye and Cr(VI) reduction by using the synthesized GOM under UV light irradiation was investigated. The photocatalytic experiment showed superior photocatalytic activity of GOM having a higher efficiency than TiO 2. We propose a plausible mechanism for the formation of various morphologies of α-GaOOH and α-Ga 2O 3.

Original languageEnglish
Pages (from-to)44-53
Number of pages10
JournalJournal of Physical Chemistry C
Issue number1
Publication statusPublished - 12 Jan 2012
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films


Dive into the research topics of 'Controlled fabrication of α-GaOOH and α-Ga 2O 3 self-assembly and its superior photocatalytic activity'. Together they form a unique fingerprint.

Cite this