TY - JOUR
T1 - Connecting the dots
T2 - Applying multispecies connectivity in marine park network planning
AU - Gates, Katie
AU - Sandoval-Castillo, Jonathan
AU - Barceló, Andrea
AU - Bertram, Andrea
AU - Pratt, Eleanor A.L.
AU - Teske, Peter R.
AU - Möller, Luciana
AU - Beheregaray, Luciano B.
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/10
Y1 - 2024/10
N2 - Marine ecosystems are highly dynamic, and their connectivity is affected by a complex range of biological, spatial, and oceanographic factors. Incorporating connectivity as a factor in the planning and management of marine protected areas (MPAs) is important yet challenging. Here, we implemented a novel integrative framework that uses intraspecific genetic and genomic data for multiple marine species to characterise connectivity across a recently established South Australian MPA network. We generated connectivity networks, estimated cross-species concordance of connectivity patterns, and tested the impact of key spatial and oceanographic factors on each species. Connectivity patterns varied markedly among species, but were most correlated among those with similar dispersal strategies. Ordination analyses revealed significant associations with both waterway distances and oceanographic advection models. Notably, waterway distances provided better predictive power in all-species combined analyses. We extended the practical relevance of our findings by employing spatial prioritisation with Marxan, using node values derived from both genetic and geographic connectivity networks. This allowed the identification of several priority areas for conservation, and substantiated the initial decision to employ spatial distance as a proxy for biological connectivity for the design of the South Australian marine park network. Our study establishes a baseline for connectivity monitoring in South Australian MPAs, and provides guidelines for adapting this framework to protected networks elsewhere in the world.
AB - Marine ecosystems are highly dynamic, and their connectivity is affected by a complex range of biological, spatial, and oceanographic factors. Incorporating connectivity as a factor in the planning and management of marine protected areas (MPAs) is important yet challenging. Here, we implemented a novel integrative framework that uses intraspecific genetic and genomic data for multiple marine species to characterise connectivity across a recently established South Australian MPA network. We generated connectivity networks, estimated cross-species concordance of connectivity patterns, and tested the impact of key spatial and oceanographic factors on each species. Connectivity patterns varied markedly among species, but were most correlated among those with similar dispersal strategies. Ordination analyses revealed significant associations with both waterway distances and oceanographic advection models. Notably, waterway distances provided better predictive power in all-species combined analyses. We extended the practical relevance of our findings by employing spatial prioritisation with Marxan, using node values derived from both genetic and geographic connectivity networks. This allowed the identification of several priority areas for conservation, and substantiated the initial decision to employ spatial distance as a proxy for biological connectivity for the design of the South Australian marine park network. Our study establishes a baseline for connectivity monitoring in South Australian MPAs, and provides guidelines for adapting this framework to protected networks elsewhere in the world.
KW - Connectivity networks
KW - Gene flow
KW - Marine protected areas
KW - Seascape genomics
KW - Spatial conservation prioritisation
UR - http://www.scopus.com/inward/record.url?scp=85201747783&partnerID=8YFLogxK
U2 - 10.1016/j.biocon.2024.110759
DO - 10.1016/j.biocon.2024.110759
M3 - Article
AN - SCOPUS:85201747783
SN - 0006-3207
VL - 298
JO - Biological Conservation
JF - Biological Conservation
M1 - 110759
ER -