Computing with non-convex polyhedra on the GPU

Daniel N. Wilke, N. Govender, Patrick Pizette, N. E. Abriak

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Citations (Scopus)

Abstract

We recently introduced Blaze-DEMGPU, a GPU based computing framework for convex polyhedral shaped particles (Govender et al. Appl. Math. Comp. 267, 810–829, 2015). The computing framework was validated against numerous industrial applications that include particulate discharge and estimating power draw for a ball mill in comminution applications. In this study we extend the computing capabilities of the convex polyhedral Blaze-DEMGPU computing platform to include non-convex polyhedral particles. We follow a similar philosophy to the well known clumping, clustering or fusing of spheres (Chong et al. Gran. Mat. 17, 377–387, 2015), but instead we fuse convex polyhedral particles. This allows for fused or super polyhedral particles that constitute effective physical properties for the fused particle e.g. the inertia tensor. The major benefit of fused polyhedral particles as opposed to clustered spherical particles is that the number of particles required to fuse fairly complex particle shapes is small. In addition, numerous decompositions exist to exactly decompose a non-convex particle in a number of convex particles. The main complexity of non-convex polyhedral particles is to resolve contact effectively and efficiently on the GPU. In this paper we outline our approach.

Original languageEnglish
Title of host publicationProceedings of the 7th International Conference on Discrete Element Methods
EditorsXikui Li, Yuntian Feng, Graham Mustoe
PublisherSpringer Science and Business Media, LLC
Pages1371-1377
Number of pages7
ISBN (Print)9789811019258
DOIs
Publication statusPublished - 2017
Externally publishedYes
Event7th International Conference on Discrete Element Methods, DEM7 2016 - Dalian, China
Duration: 1 Aug 20164 Aug 2016

Publication series

NameSpringer Proceedings in Physics
Volume188
ISSN (Print)0930-8989
ISSN (Electronic)1867-4941

Conference

Conference7th International Conference on Discrete Element Methods, DEM7 2016
Country/TerritoryChina
CityDalian
Period1/08/164/08/16

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Computing with non-convex polyhedra on the GPU'. Together they form a unique fingerprint.

Cite this