TY - JOUR
T1 - Composites of sodium alginate based - Functional materials towards sustainable adsorption of benzene phenol derivatives - Bisphenol A/Triclosan
AU - Chaturvedi, Mridula
AU - Kaur, Navpreet
AU - Jeyaseelan, Christine
AU - Sillanpää, Mika
AU - Farraj, Saleh Al
AU - Sharma, Shashi
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2024/8/15
Y1 - 2024/8/15
N2 - The present study evaluates the adsorption efficiency of low-cost carbonaceous adsorbents as fly ash (FA), saw dust biochar (SDB) (untreated and alkali - treated), live/dead pulverized white rot fungus Hypocrea lixii biomass encapsulated in sodium alginate (SA) against the commercially available activated carbon (AC) and graphene oxide (GO) SA beads for removal of benzene phenol derivatives - Bisphenol A (BPA)/triclosan (TCS). Amongst bi - and tri - composites SA beads, tri-composite beads comprising of untreated flyash - dead fungal biomass - sodium alginate (UFA - DB - SA) showed at par results with commercial composite beads. The tri - composite beads with point zero charge (Ppzc) of 6.2 was characterized using FTIR, XRD, surface area BET and SEM-EDX. The batch adsorption using tri - composite beads revealed removal of 93% BPA with adsorption capacity of 16.6 mg/g (pH 6) and 83.72% TCS with adsorption capacity of 14.23 mg/g (pH 5), respectively at 50 ppm initial concentration with 6 % adsorbent dose in 5 h. Freundlich isotherm favoring multilayered adsorption provided a better fit with r2 of 0.9674 for BPA and 0.9605 for TCS respectively. Intraparticle diffusion model showed adsorption of BPA/TCS molecules to follow pseudo - second order kinetics with boundary layer diffusion governed by first step of fast adsorption and intraparticle diffusion within pores by second slow adsorption step. Thermodynamic parameters (ΔH°, ΔS°, ΔG°) revealed adsorption process as exothermic, orderly and spontaneous. Methanol showed better desorbing efficiency leading to five cycles reusability. The phytotoxicity assay revealed increased germination rate of mung bean (Vigna radiata) seeds, sprinkled with post adsorbed treated water (0 h, 5 h and 7 h) initially spiked with 50 ppm BPA/TCS. Overall, UFA - DB - SA tri - composite beads provides a cost effective and eco - friendly matrix for effective removal of hydrophobic recalcitrant compounds.
AB - The present study evaluates the adsorption efficiency of low-cost carbonaceous adsorbents as fly ash (FA), saw dust biochar (SDB) (untreated and alkali - treated), live/dead pulverized white rot fungus Hypocrea lixii biomass encapsulated in sodium alginate (SA) against the commercially available activated carbon (AC) and graphene oxide (GO) SA beads for removal of benzene phenol derivatives - Bisphenol A (BPA)/triclosan (TCS). Amongst bi - and tri - composites SA beads, tri-composite beads comprising of untreated flyash - dead fungal biomass - sodium alginate (UFA - DB - SA) showed at par results with commercial composite beads. The tri - composite beads with point zero charge (Ppzc) of 6.2 was characterized using FTIR, XRD, surface area BET and SEM-EDX. The batch adsorption using tri - composite beads revealed removal of 93% BPA with adsorption capacity of 16.6 mg/g (pH 6) and 83.72% TCS with adsorption capacity of 14.23 mg/g (pH 5), respectively at 50 ppm initial concentration with 6 % adsorbent dose in 5 h. Freundlich isotherm favoring multilayered adsorption provided a better fit with r2 of 0.9674 for BPA and 0.9605 for TCS respectively. Intraparticle diffusion model showed adsorption of BPA/TCS molecules to follow pseudo - second order kinetics with boundary layer diffusion governed by first step of fast adsorption and intraparticle diffusion within pores by second slow adsorption step. Thermodynamic parameters (ΔH°, ΔS°, ΔG°) revealed adsorption process as exothermic, orderly and spontaneous. Methanol showed better desorbing efficiency leading to five cycles reusability. The phytotoxicity assay revealed increased germination rate of mung bean (Vigna radiata) seeds, sprinkled with post adsorbed treated water (0 h, 5 h and 7 h) initially spiked with 50 ppm BPA/TCS. Overall, UFA - DB - SA tri - composite beads provides a cost effective and eco - friendly matrix for effective removal of hydrophobic recalcitrant compounds.
KW - Adsorption isotherm models
KW - Composites
KW - Desorption
KW - Kinetics
KW - Phytotoxicity
KW - Thermodynamic
UR - http://www.scopus.com/inward/record.url?scp=85193745590&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2024.119192
DO - 10.1016/j.envres.2024.119192
M3 - Article
C2 - 38777299
AN - SCOPUS:85193745590
SN - 0013-9351
VL - 255
JO - Environmental Research
JF - Environmental Research
M1 - 119192
ER -