TY - JOUR
T1 - Comparative Study of Rheological Effects of Vegetable Oil-Lubricant, TiO2, MWCNTs Nano-Lubricants, and Machining Parameters’ Influence on Cutting Force for Sustainable Metal Cutting Process
AU - Okokpujie, Imhade P.
AU - Tartibu, Lagouge K.
AU - Sinebe, Jude E.
AU - Adeoye, Adeyinka O.M.
AU - Akinlabi, Esther T.
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4
Y1 - 2022/4
N2 - Nano-lubricant machining of Aluminum 8112 alloy is the art of sustainable manufacturing of mechanical components used for defense technology and aerospace application. However, machining aluminum alloys generates excess heat, which tends to increase the cutting force (F.C.), due to the material adhesion of the workpiece on the cutting tool. The challenge has drawn researchers’ attention to introducing nano-lubrication processes. This study focused on the comparative assessment of eco-friendly vegetable oil-based-TiO2 and MWCNTs nano-lubricant on cutting force during the machining of the Aluminum 8112 alloy. Nanoparticles were implemented on the base oil using an ultrasonic vibrator and magnetic stirrer before the application in the machining, via the minimum quantity lubrication process. Quadratic central composite designs were employed to carry out the experiment, using five factors at five levels, having experimental runs of 50. The input parameters are helix angle (H.A.), spindle speed (S.S.), axial depth of cut (ADOC), feed rate (F.R.), and length of cut (LOC). The results show that the application of the nanoparticle increases the performance of the vegetable oil on the cutting force. TiO2 nano-lubricant reduces the cutting force by 0.26%, compared with the MWCNTs, and 6% compared with the vegetable oil. Furthermore, the MWCNT nano-lubricant reduces the cutting force by 5% compared with the vegetable oil lubrication environment.
AB - Nano-lubricant machining of Aluminum 8112 alloy is the art of sustainable manufacturing of mechanical components used for defense technology and aerospace application. However, machining aluminum alloys generates excess heat, which tends to increase the cutting force (F.C.), due to the material adhesion of the workpiece on the cutting tool. The challenge has drawn researchers’ attention to introducing nano-lubrication processes. This study focused on the comparative assessment of eco-friendly vegetable oil-based-TiO2 and MWCNTs nano-lubricant on cutting force during the machining of the Aluminum 8112 alloy. Nanoparticles were implemented on the base oil using an ultrasonic vibrator and magnetic stirrer before the application in the machining, via the minimum quantity lubrication process. Quadratic central composite designs were employed to carry out the experiment, using five factors at five levels, having experimental runs of 50. The input parameters are helix angle (H.A.), spindle speed (S.S.), axial depth of cut (ADOC), feed rate (F.R.), and length of cut (LOC). The results show that the application of the nanoparticle increases the performance of the vegetable oil on the cutting force. TiO2 nano-lubricant reduces the cutting force by 0.26%, compared with the MWCNTs, and 6% compared with the vegetable oil. Furthermore, the MWCNT nano-lubricant reduces the cutting force by 5% compared with the vegetable oil lubrication environment.
KW - aluminum alloy
KW - cutting force
KW - machining
KW - nano-lubricant
KW - vegetable oil lubricant
UR - http://www.scopus.com/inward/record.url?scp=85128400780&partnerID=8YFLogxK
U2 - 10.3390/lubricants10040054
DO - 10.3390/lubricants10040054
M3 - Article
AN - SCOPUS:85128400780
SN - 2075-4442
VL - 10
JO - Lubricants
JF - Lubricants
IS - 4
M1 - 54
ER -